
Report number: 2010:01 ISSN: 2000-0456
Available at www.stralsakerhetsmyndigheten.se

Licensing of safety critical software
for nuclear reactors
Common position of seven European nuclear regula-
tors and authorised technical support organisations

2010:01

Title: Licensing of safety critical software for nuclear reactors – Common position of seven
European nuclear regulators and authorized technical support organisations.
Report number: 2010:01
Author/Authors: The members of the Task Force on Safety Critical Software. For full informa-
tion of members, and corresponding organizations, of the Task Force see page 18 in the report.
Date: January 2010

The conclusions and viewpoints presented in the report are those of the
author/authors and do not necessarily coincide with those of the SSM.

Background
This report is the 4th revision of the report.

The task force was formed in 1994 as a group of experts on safety critical
software. The members come from regulatory authorities and/or their
technical support organization.

Bo Liwång, SSM, has been a member since the work started in 1994.

For full information of the historical background, previous revisions of
the report and objectives, see the Introduction of the report.

The report, without the SSM cover and this page, will be published by or
available at the websites of the other participating organizations.

Effect on SSM supervisory and regulatory task
The effect of the report is high as it presents a common view on im-
portant issues by experts from seven European regulatory organizations,
even though the report is not a regulation or guide.

For further information contact:
Bo Liwång
Strålsäkerhetsmyndigheten (SSM), Swedish Radiation Safety Authority
Bo.liwang@ssm.se

SSM 2010:01

Licensing of safety critical software

for nuclear reactors

Common position of seven European

nuclear regulators and authorised

technical support organisations

BEL V, Belgium

BfS, Germany

CSN, Spain

ISTec, Germany

NII, United Kingdom

SSM, Sweden

STUK, Finland

REVISION 2010

 SSM 2010:01

Disclaimer
Neither the organisations nor any person acting on their behalf is responsible for the use
which might be made of the information contained in this report.

The report can be obtained from the following organisations or downloaded from their
websites:

BEL V, Subsidiary of the Federal Agency for
Nuclear Control
Rue Walcourt, 148
B-1070 Brussels, Belgium
http://www.belv.be/

Health and Safety Executive
Nuclear Installations Inspectorate (NII)
Redgrave Court, Merton Road,
Bootle, Merseyside, L20 7HS, UK
http://www.hse.gov.uk/nuclear

Federal Office for Radiation Protection
(BfS)
P.O. Box 100149
D-38201 Salzgitter, Germany
http://www.bfs.de/Kerntechnik/

Strålsäkerhetsmyndigheten (SSM)
Swedish Radiation Safety Authority
SE-17116 Stockholm
Sweden
http://www.ssm.se

Consejo de Seguridad Nuclear (CSN)
C/ Justo Dorado 11
28040 Madrid
Spain
http://www.csn.es/

STUK Radiation and Nuclear Safety
Authority
Laippatie 4, P.O. Box 14
FIN-00881 Helsinki, Finland
http://www.stuk.fi/

Institut für Sicherheitstechnologie (ISTec)
GmbH
Forschungsgelände
D-85748 Garching b. München, Germany
http://www.istec.grs.de/

© 2010 BEL V, BfS, Consejo de Seguridad Nuclear, ISTec, NII, SSM, STUK

Reproduction is authorised provided the source is acknowledged.

 3SSM 2010:01

http://www.belv.be/
http://www.hse.gov.uk/nuclear
http://www.bfs.de/Kerntechnik/
http://www.ssm.se/
http://www.csn.es/
http://www.stuk.fi/
http://www.istec.grs.de/

Contents

Executive Summary..7

I INTRODUCTION ...11

II GLOSSARY ..19

PART 1: GENERIC LICENSING ISSUES ...25

1.1 Safety Demonstration ..25

1.2 System Classes, Function Categories and Graded Requirements for Software........................33

1.3 Reference Standards...41

1.4 Uses and Validation of Pre-existing Software (PSW) ...47

1.5 Tools ..51

1.6 Organisational Requirements...55

1.7 Software Quality Assurance Programme and Plan ..59

1.8 Security ..63

1.9 Formal Methods...67

1.10 Independent Assessment..71

1.11 Graded Requirements for Safety Related Systems (New and Pre-existing Software)...............75

1.12 Software Design Diversity...83

1.13 Software Reliability ...89

1.14 Use of Operating Experience ...95

1.15 Smart Sensors and Actuators ...101

 4 SSM 2010:01

 5

PART 2: LIFE CYCLE PHASE LICENSING ISSUES ..109

2.1 Computer Based System Requirements ...109

2.2 Computer System Design ..113

2.3 Software Design and Structure ..117

2.4 Coding and Programming Directives...123

2.5 Verification ..129

2.6 Validation and Commissioning..135

2.7 Change Control and Configuration Management ..141

2.8 Operational Requirements ...147

References ..153

SSM 2010:01

Executive Summary

Objectives

It is widely accepted that the assessment of software cannot be limited to verification and
testing of the end product, i.e. the computer code. Other factors such as the quality of the
processes and methods for specifying, designing and coding have an important impact on the
implementation. Existing standards provide limited guidance on the regulatory and safety
assessment of these factors. An undesirable consequence of this situation is that the licensing
approaches taken by nuclear safety authorities and by technical support organisations are
determined independently with only limited informal technical co-ordination and information
exchange. It is notable that several software implementations of nuclear safety systems have
been marred by costly delays caused by difficulties in co-ordinating the development and
qualification process.

It was thus felt necessary to compare the respective licensing approaches, to identify where a
consensus already exists, and to see how greater consistency and more mutual acceptance
could be introduced into current practices.

This report is the result of the work of a group of regulator and safety authorities’ experts.
The 2007 version was completed at the invitation of the Western European Nuclear
Regulators’ Association (WENRA). The major result of the work is the identification of
consensus and common technical positions on a set of important licensing issues raised by the
design and operation of computer based systems used in nuclear power plants for the
implementation of safety functions. The purpose is to introduce greater consistency and more
mutual acceptance into current practices. To achieve these common positions, detailed
consideration was paid to the licensing approaches followed in the different countries
represented by the experts of the task force.

The report is intended to be useful:

– to coordinate regulators’ and safety experts’ technical viewpoints in the design of
regulators’ national policies and in revisions of guidelines;

– as a reference in safety cases and demonstrations of safety of software based systems;

– as guidance for system design specifications by manufacturers and major I&C suppliers
on the international market.

SSM 2010:01

Document Structure

From the outset, attention focused on computer based systems used in nuclear power plants
for the implementation of safety functions (i.e. the functions of the highest safety criticality
level); namely, those systems classified by the International Atomic Energy Agency as “safety
systems”. The recommendations of this report therefore mainly address “safety systems”;
“safety related systems” are addressed in certain common positions and recommendations
only where explicitly mentioned.

In a first stage of investigation, the task force identified what were believed to be, from a
regulatory viewpoint, some of the most important and practical issue areas raised by the
licensing of software important to safety. In the second stage of the investigation, for each
issue area, the task force strove for and reached: (1) a set of common positions on the basis for
licensing and evidence which should be sought, (2) consensus on best design and licensing
recommended practices, and (3) agreement on certain alternatives which could be acceptable.

The common positions are intended to convey the unanimous views of the Task Force
members on the guidance that the licensees need to follow as part of an adequate safety
demonstration. Throughout the document these common positions are expressed with the
auxiliary verb “shall”. The use of this verb for common positions is intended to convey the
unanimous desire felt by the Task Force members for the licensees to satisfy the requirements
expressed in the clause. The common positions are a common set of requirements and
practices considered necessary by the member states represented in the task force.

There was no systematic attempt, however, at guaranteeing that for each issue area these sets
are complete or sufficient. It is also recognised that – in certain cases – other possible
practices cannot be excluded, but the members felt that such alternatives will be difficult to
justify.

Recommended practices are supported by most, but may not be systematically implemented
by all of the members states represented in the task force. Recommended practices are
expressed with the auxiliary verb “should”.

In order to avoid the guidance being merely reduced to a lowest common denominator of
safety (inferior levelling), the task force – in addition to commonly accepted practices – also
took care not to neglect essential safety or technical measures.

 8 SSM 2010:01

 9

Background (history)

In 1994, the Nuclear Regulator Working Group (NRWG) and the Reactor Safety Working
Group (RSWG) of the European Commission Directorate General XI (Environment, Nuclear
safety and Civil Protection) launched a task force of experts from nuclear safety institutes
with the mandate of “reaching a consensus among its members on software licensing issues
having important practical aspects”. This task force selected a set of key issues and produced
an EC report [4] publicly available and open to comments. In March 1998, a project called
ARMONIA (Action by Regulators to Harmonise Digital Instrumentation Assessment) was
launched with the mission to prepare a new version of the document, which would integrate
the comments, received and would deal with a few software issues not yet covered. In May
2000, the NRWG approved a report classified by the EC under the category “consensus
document” (report EUR 19265 EN [5]). After this publication, the task force continued to
work on important licensing aspects of safety critical software that had not yet been
addressed. At the end of 2005 when the NRWG was disbanded by the EC, the task force was
invited by the WENRA association to pursue and complete the 2007 version of this report.
The common positions and recommended practices of EUR 19265 [5] are included. The task
force acknowledges and appreciates the support provided by the EC and WENRA during the
production of this work.

 * * *

SSM 2010:01

I INTRODUCTION

All government,

– indeed every human benefit and enjoyment,
every virtue and every prudent act –

is founded on compromise and barter.

(Edmund Burke, 1729-1797)

Objectives
It is widely accepted that the assessment of software cannot be limited to verification and
testing of the end product, i.e. the computer code. Other factors such as the quality of the
processes and methods for specifying, designing and coding have an important impact on the
implementation. Existing standards provide limited guidance on the regulatory and safety
assessment of these factors. An undesirable consequence of this situation is that the licensing
approaches taken by nuclear safety authorities and by technical support organisations are
determined independently and with only limited informal technical co-ordination and
information exchanges. It is notable that several software implementations of nuclear safety
systems have been marred by costly delays caused by difficulties in co-ordinating the
development and the qualification process.

It was thus felt necessary to compare the respective licensing approaches, to identify where a
consensus already exists, and to see how greater consistency and more mutual acceptance
could be introduced into the current practices.

This document is the result of the work of a group of regulator and safety authorities’ experts
started under the authority of the European Commission DGXI Nuclear Regulator Working
Group (NRWG) and continued at the invitation of WENRA (Western European Nuclear
Regulators’ Association) when the NRWG was disbanded in 2005. The major result of the
work is the identification of consensus and common technical positions on a set of important
licensing issues raised by the design and operation of computer based systems used in nuclear
power plants for safety functions. The purpose is to introduce greater consistency and more
mutual acceptance into current practices. To achieve these common positions, detailed

 11SSM 2010:01

consideration was paid to the licensing approaches followed in the different countries
represented by the experts of the task force.

The report is intended to be useful:

– to coordinate regulators’ and safety experts’ technical viewpoints in the design of
regulators’ national policies and in revisions of guidelines;

– as a reference in safety cases and demonstrations of safety of software based systems;

– as guidance for system design specifications by manufacturers and major I&C suppliers
on the international market.

Scope
The task force decided at an early stage to focus attention on computer based systems used in
nuclear power plants for the implementation of safety functions (i.e. the functions of the
highest safety criticality level); namely, those systems classified by the International Atomic
Energy Agency as “safety systems”. Therefore, recommendations of this report – except those
of chapter 1.11 – primarily address “safety systems” and not “safety related systems”.

In certain cases, in the course of discussions, the task force came to the conclusion that
specific practices were clearly restricted to safety systems and could be dispensed with – or at
least relaxed – for safety related systems. Reporting the possibility of such dispensations and
relaxations was felt useful should there be future work on safety related systems. These
practices are therefore explicitly identified as applying to safety systems. Some relaxations of
requirements for safety related systems are also mentioned in chapter 1.2. All these
relaxations for safety related systems are restated in chapter 1.11.

The task force worked on the assumption that the use of digital and programmable technology
has in many situations become inescapable. A discussion of the appropriateness of the use of
this technology has therefore not been considered. Moreover, it was felt that the most
difficult aspects of the licensing of digital programmable systems are rooted in the specific
properties of the technology. The objective was therefore to delineate practical and technical
licensing guidance, rather than discussing or proposing basic principles or requirements. The
design requirements and the basic principles of nuclear safety in force in each member state
are assumed to remain applicable.

This report represents the consensus view achieved by the experts who contributed to the task
force. It is the result of what was at the time of its initiation a first attempt at the international
level to achieve consensus among nuclear regulators on practical methods for licensing
software based systems.

 12 SSM 2010:01

This document should neither be considered as a standard, nor as a new set of European
regulations, nor as a common subset of national regulations, nor as a replacement for national
policies. It is the account, as complete as possible, of a common technical agreement among
regulatory and safety experts. National regulations may have additional requirements or
different requirements, but hopefully in the end no essential divergence with the common
positions. It is precisely from this common agreement that regulators can draw support and
benefit when assessing safety cases, licensee’s submissions, and issuing regulations. The
document is also useful to licensees, designers, suppliers for issuing bids and developing new
applications.

Safety Plan
Evidence to support the safety demonstration of a computer based digital system is produced
throughout the system life cycle, and evolves in nature and substance with the project. A
number of distinguishable types of evidence exist on which the demonstration can be
constructed.

The task force has adopted the view that three basic independent types of evidence can and
must be produced: evidence related to the quality of the development process; evidence
related to the adequacy of the product; and evidence of the competence and qualifications of
the staff involved in all of the system life cycle phases. In addition, convincing operating
experience may be needed to support the safety demonstration of pre-existing software.

As a consequence, the task force reached early agreement on an important fundamental
recommendation that applies at the inception of any project, namely:

A safety plan1 shall be agreed upon at the beginning of the project between the
licensor and the licensee. This plan shall identify how the safety
demonstration will be achieved. More precisely, the plan shall identify the
types of evidence that will be used, and how and when this evidence shall be
produced.

This report neither specifies nor imposes the contents of a specific safety plan. All the
subsequent recommendations are founded on the premise that a safety plan exists and has
been agreed upon by all parties involved. The intent herein is to give guidance on how to
produce the evidence and the documentation for the safety demonstration and for the contents
of the safety plan. It is therefore implied that all the evidence and documentation

1 A safety plan is not necessarily a specific document.

 13SSM 2010:01

recommended by this report, among others that the regulator may request, should be made
available to the regulator.

The safety plan should include a safety demonstration strategy. For instance, this strategy
could be based on a plant independent type approval of software and hardware components,
followed by the approval of plant specific features, as it is practised in certain countries.

Often this plant independent type approval is concerned with the analysis and testing of the
non-plant-specific part of a configurable tool or system. It is a stepwise verification which
includes:

– an analysis of each individual software and hardware component with its specified
features, and

– integrated tests of the software on a hardware system using a “typical” configuration.

Only properties at the component level can be demonstrated by this plant independent type
approval. It must be remembered that a program can be correct for one set of data, and be
erroneous for another. Hence assessment and testing of the plant specific software remains
essential.

Licensing Issues: Generic and Life Cycle Specific
As described earlier, in a first stage, the task force selected a set of specific technical issue
areas, which were felt to be of utmost importance to the licensing process. In a second stage
phase, each of these issue areas was studied and discussed in detail until a common position
was reached.

These issue areas were partitioned into two sets: “generic licensing issues” and “life cycle
phase licensing issues”. Issues in the second set are related to a specific stage of the computer
based system design and development process, while those of the former have more general
implications and apply to several stages or to the whole system lifecycle. Each issue area is
dealt with in a separate chapter of this report, namely:

 14 SSM 2010:01

PART 1: GENERIC LICENSING ISSUES

1.1 Safety Demonstration

1.2 System Classes, Function Categories and Graded Requirements for Software

1.3 Reference Standards

1.4 Uses and Validation of Pre-existing Software (PSW)

1.5 Tools

1.6 Organisational Requirements

1.7 Software Quality Assurance Programme and Plan

1.8 Security

1.9 Formal Methods

1.10 Independent Assessment

1.11 Graded Requirements for Safety Related Systems
(New and Pre-existing Software)

1.12 Software Design Diversity

1.13 Software Reliability

1.14 Use of Operating Experience

1.15 Smart Sensors and Actuators

PART 2: LIFE CYCLE PHASE LICENSING ISSUES

2.1 Computer Based System Requirements

2.2 Computer System Design

2.3 Software Design and Structure

2.4 Coding and Programming Directives

2.5 Verification

2.6 Validation and Commissioning

2.7 Change Control and Configuration Management

2.8 Operational Requirements

 15SSM 2010:01

This set of issue areas is felt to address a consistent set of licensing aspects right from the
inception of the life cycle up to and including commissioning. It is important to note,
however, that although the level of attention given in this document may not always reflect it,
a balanced consideration of these different licensing aspects is needed for the safety
demonstration.

Definition of Common Positions and Recommended Practices
Apart from chapter 1.3 which describes the standards in use by members of the task force, for
each issue area covered, the following four aspects have been addressed:

– Rationale: technical motivations and justifications for the issue from a regulatory point of
view;

– Description of the issue in terms of the problems to be resolved;

– Common position and the evidence required;

– Recommended practices.

Common positions are expressed with the auxiliary verb “shall”; recommended practices with
the verb “should”.

The use of the verb “shall” for common positions is intended to convey the unanimous desire
felt by the Task Force members for the licensees to satisfy the requirement expressed in the
clause.

These common position clauses can be regarded as a common set of requirements and
practices in member states represented in the task force. However, it cannot be guaranteed
that for each issue area the set of common position clauses is complete or sufficient. It should
also be recognised that – in certain cases – other possible practices cannot be excluded, but
the members felt that such alternatives would be difficult to justify.

Recommended practices are supported by most, but may not be systematically implemented
by all of the members states represented in the task force. Some of these recommended
practices originated from proposed common position resolutions on which unanimity could
not be reached.

In order to avoid the guidance being merely reduced to a lowest common denominator of
safety (inferior levelling), the task force – in addition to commonly accepted practices – also
took care not to neglect essential safety or technical measures.

 16 SSM 2010:01

These common positions and recommended practices have of course not been elaborated in
isolation. They take into account not only the positions of the participating regulators, but
also the guidance issued by other regulators with experience in the licensing of computer-
based nuclear safety systems. They have also been reviewed against the international
guidance, the technical expertise and the evolving recommendations issued by the IAEA, the
IEC and the IEEE organisations. The results of research activities on the design and the
assessment of safety critical software by EC projects such as PDCS (Predictably dependable
computer systems), DeVa (Design for Validation), CEMSIS (Cost Effective Modernisation of
Systems Important to Safety) and by studies carried out by the EC Joint Research Centre have
also provided sources of inspiration and guidance. A bibliography at the end of the report
gives the major references that have been used by the task force and the consortium.

Historical Background
In 1994, the Nuclear Regulator Working Group (NRWG) and the Reactor Safety Working
Group (RSWG) of the European Commission Directorate General XI (Environment, Nuclear
safety and Civil Protection) launched a task force of experts from nuclear safety institutes
with the mandate of “reaching a consensus among its members on software licensing issues
having important practical aspects”. This task force selected a set of key issues and produced
an EC report [4] publicly available and open to comment. In March 1998, the project
ARMONIA (Action by Regulators to Harmonise Digital Instrumentation Assessment) was
launched with the mission to prepare a new version of the document, which would integrate
the comments, received and would deal with a few software issues not yet covered. In May
2000, after a long process of meetings and revisions, a report was presented and approved by
the NRWG, and classified under the category “consensus document”. It was made available
through the Europa server and published as report EUR 19265 EN [5]. After this publication,
the task force continued to work on important licensing aspects of safety critical software that
had not yet been addressed. At the end of 2005 when the NRWG was disbanded by the EC,
the task force was invited by WENRA to pursue and complete the 2007 version of this report.
The common positions and recommended practices of EUR 19265 [5] are included. The task
force continues to work on missing and emerging licensing aspects of safety critical software.

 17SSM 2010:01

 18

The experts, members of the task force, who actively contributed to this version of the report,
are:

Belgium P.-J. Courtois, BEL V (1994-)

A. Geens, AVN (2004-2006)

Finland M.L. Järvinen, STUK (1997- 2003)

P. Suvanto, STUK (2003-)

Germany M. Kersken, ISTec (1994-2003)

E.W. Hoffman, ISTec (2003-2007)

J. Märtz, ISTec (2007-)

F. Seidel, BfS (1997-)

Spain R. Cid Campo, CSN (1997-)

F. Gallardo, CSN (2003-)

Sweden B Liwång, SSM (1994-)

United Kingdom R. L. Yates, NII (Chairman) (1999-)

A consortium consisting of ISTec, NII, and AVN (chair) was created in March 1998 to give
research, technical and editorial support to the task force. Under the project name of
ARMONIA (Action by Regulators for harmonising Methods Of Nuclear digital
Instrumentation Assessment), the consortium received financial support from the EC
programme of initiatives aimed at promoting harmonisation in the field of nuclear safety. P.-
J. Courtois (AVN), M. Kersken (ISTec), P. Hughes, N. Wainwright and R. L. Yates (NII)
were active members of ARMONIA. In the long course of meetings and revisions, technical
assistance and support was received from J. Pelé, J. Gomez, F. Ruel, J.C. Schwartz, H.
Zatlkajova from the EC, and G. Cojazzi and D. Fogli from JRC, Ispra. P. Govaerts (AVN)
was instrumental in setting up the task force in 1994.

 * * *

SSM 2010:01

II GLOSSARY

The following terms should be interpreted as having the following meaning.

These terms are highlighted as a defined term the first time they are used in each chapter of
this document.

(Operating) Availability: Fraction of time the system is operational and delivers service
(readiness for delivering service).

Category (safety-): One of three possible assignments (safety, safety related and not
important to safety) of functions in relation to their different importance to safety.

Channel: An arrangement of interconnected components within a system that initiates a
single output. A channel loses its identity where single output signals are combined with
signals from other channels such as a monitoring channel or a safety actuation channel. (See
IEC 61513 and IAEA Safety Guide NS-G_1.3)

Class (safety-): One of three possible assignments (safety, safety related and not important to
safety) of systems, components and software in relation to their different importance to safety.

Commissioning: The onsite process during which plant components and systems, having been
constructed, are made operational and confirmed to be in accordance with the design
assumptions and to have met the safety requirements, the performance criteria and the
requirements for periodic testing and maintainability.

Common cause failure: Failure of two or more structures, systems, channels or components
due to a single specific event or cause. (IAEA Safety Guide NS-G-1.3)

Common position: Requirement or practice unanimously considered by the member states
represented in the task force as necessary for the licensee to satisfy

Completeness: Property of a formal system in which every true fact is provable.

Component: One of the parts that make up a system. A component may be hardware or
software and may be subdivided into other components. (IEC 61513, 3.9)

Computer based system (in short also the System): The plant system important to safety in
which is embedded the computer implementation of the safety/safety related function(s).

 19SSM 2010:01

Computer system architecture: The hardware components (processors, memories, I/O
devices) of the computer based system, their interconnections, the communication systems,
and the mapping of the software functions on these components.

Consistency: Property of a formal system which contains no sentence such that both the
sentence and its negation can be proven from the assumptions.

Dangerous failure: Used as a probabilistic notion, failure that has the potential to put the
safety system in a hazardous or fail-to-function state. Whether the potential is realised may
depend on the channel architecture of the system; in systems with multiple channels to
improve safety, a dangerous hardware failure is less likely to lead to the overall dangerous or
fail-to-function state. (IEC 61508-4, 3.6.7)

Dependability: Trustworthiness of the delivered service (e.g. a safety function) such that
reliance can justifiably be placed on this service. Reliability, availability, safety are attributes
of dependability.

Diversity: Existence of two or more different ways or means of achieving a special objective
(IEC 60880 Ed. 2 [12])

Diversity design options/seeking decisions: Choices made by those tasked with delivering
diverse software programs as to what are the most effective methods and techniques to
prevent coincident failure of the programs.

Equivalence partitioning: Technique for determining which classes of input data receive
equivalent treatment by a system, a software module or program. A result of equivalence
partitioning is the identification of a finite set of software functions and of their associated
input and output domains. Test data can be specified based on the known characteristics of
these functions.

Error: Manifestation of a fault and/or state liable to lead to a failure.

Failure: Deviation of the delivered service from compliance with the specifications.

Fault: Cause of an error.

Formal methods, formalism: The use of mathematical models and techniques in the design
and analysis of computer hardware and software.

Functional diversity: Application of diversity at the functional level (for example, to have
trip activation on both pressure and temperature limit). (IEC 60880 Ed.2 (3.18) [12] and
IEC61513 (3.23) [15])

Harm: Physical injury or damage to the health of people, either directly or indirectly, as a
result of damage to property or the environment (IEC 61508-4, 3.1.1)

Hazard: Potential source of harm (IEC 61508-4, 3.1.2)

 20 SSM 2010:01

I&C: instrumentation and control

Licensee safety department: A licensee’s department, staffed with appropriate computer
competencies independent from the project team and operating departments appointed to
reduce the risk that project or operational pressures jeopardise the safety systems’ fitness for
purpose.

NPP: nuclear power plant.

pfd: probability of failure on demand.

Plant safety analysis: Deterministic and/or probabilistic analysis of the selected postulated
initiating events to determine the minimum safety system requirements to ensure the safe
behaviour of the plant. System requirements are elicited on the basis of the results of this
analysis.

Pre-existing software (PSW): Software which is used in a NPP computer based system
important to safety, but which was not produced by the development process under the control
of those responsible for the project (also referred to as “pre-developed” software). “Off-the-
shelf” software is a kind of PSW.

Probability of failure: A numerical value of failure rate normally expressed as either
probability of failure on demand (pfd) or probability of dangerous failure per year (pfy) (e.g.
10-4 pfd or 10-4 pfy).

Programmed electronic component: An electronic component with embedded software that
has the following restrictions:

– its principal function is dedicated and completely defined by design;

– it is functionally autonomous;

– it is parametrizable but not programmable by the user.

These components can have additional secondary functions such as calibration, autotests,
communication, information displays. Examples are relays, recorders, regulators, smart
sensors and actuators.

PSA: Probability safety assessment

QRA: Quantitative risk assessment

Recommended practice: Requirement or practice considered by most member states
represented in the task force as necessary for the licensee to satisfy.

Regulator: The regulatory body and/or authorised technical support organisation acting on
behalf of its authority.

 21SSM 2010:01

Reliability: Measure of continuous delivery of proper service. Measure of time to failure, or
number of failures on demand.

Reliability level: A defined numerical probability of failure range (e.g. 10-3 > pfd >10-4).

Reliability target: Probability of failure value typically arising from the plant safety analysis
(e.g. PSA/QRA) for which a safety demonstration is required.

Requirement (functional): Service or function expected to be delivered.

Requirement (non-functional): Property or performance expected to be guaranteed.

Requirement (graded -): A possible assignment of graded or relaxed requirements on the
qualification of the software development processes, on the qualities of software products and
on the amount of verification and validation resulting from consideration of what is necessary
to reach the appropriate level of confidence that the software is fit for purpose to execute
specific functions in a given safety category.

Requirement specification: Precise and documented description or representation of a
requirement.

Requirement validation: Demonstration of the correctness, completeness and consistency of a
set of requirements.

Risk: Combined measure of the likelihood of a specified undesired event and of the
consequences associated with this event.

Safety: The property of a state or a system, the risk level of which is below an agreed
acceptable value. Non-occurrence of catastrophic failures, i.e. of failures which deviate from
the safety specifications.

Safety demonstration: The set of arguments and evidence elements which support a selected
set of claims on the dependability – in particular the safety – of the operation of a system
important to safety used in a given plant environment.

Safety integrity level (SIL): Discrete level (one out of a possible four), corresponding to a
range of values of the probability of a system important to safety satisfactorily performing its
specified safety requirements under all the stated conditions within a stated period of time.

Safety justification: See Safety demonstration

Safety plan: A plan, which identifies how the safety demonstration is to be achieved; more
precisely, a plan which identifies the types of evidence that will be used, and how and when
this evidence shall be produced.

Safety related systems: Those instrumentation and control systems important to safety that are
not included in safety systems (IAEA safety guide NSG 1.3).

 22 SSM 2010:01

Safety system: A system important to safety provided to assure the safe shutdown of the
reactor and the heat removal from the core, or to limit the consequences of operational
occurrences and accident conditions.

Security: The prevention of unauthorised disclosure (confidentiality), modification (integrity)
and retention of information, software or data (availability).

Smart sensor/actuator: Intelligent measuring, communication and actuation devices
employing programmed electronic components to enhance the performance provided in
comparison to conventional devices.

Software architecture, software modules, programs, subroutines: Software architecture refers
to the structure of the modules making up the software. These modules interact with each
other and with the environment through interfaces. Each module includes one or more
programs, abstract data types, communication paths, data structures, display templates, etc. If
the system includes multiple computers and the software is distributed amongst them, then the
software architecture must be mapped to the hardware architecture by specifying which
programs run on which processors, where files and displays are located and so on. The
existence of interfaces between the various software modules, and between the software and
the external environment (as per the software requirements document), should be identified.

Software maintenance: Software change in operation following the completion of
commissioning at site.

Software modification: Software change occurring during the development of a system up to
and including the end of commissioning.

Soundness: Property of a formal system in which every provable fact is true.

SQA: Software quality assurance

Synchronisation programming primitive: High level programming construct, such as for
example a semaphore variable, used to abstract from interrupts and to program mutual
exclusion and synchronisation operations between co-operating processes (see e.g. [5]).

System: When used as a stand-alone term, abbreviation for computer based system.

Systems important to safety: Systems which include safety systems and safety-related systems.
In general, all those items which, if they were to fail to act, or act when not required, may
result in the need for action to prevent undue radiation exposure (IAEA safety guide NSG
1.3).

 23SSM 2010:01

 24

Validation (of the system): Obtaining evidence, usually by testing, that the integrated
hardware and software will operate and deliver service as required by the functional and non
functional computer based system requirement specifications. The validation of computer
based systems is usually performed off-site.

Verification: Checking or testing that the description of the product of a design phase – for
the coding phase this is the actual product – is consistent and complete with respect to its
specification, which is usually the output of a previous phase.

V&V: verification and validation

 * * *

SSM 2010:01

PART 1: GENERIC LICENSING ISSUES

1.1 Safety Demonstration

“Sapiens nihil affirmat quod non probet.”

1.1.1 Rationale

Standards and national rules reflect the knowledge of experts from industry and from
regulatory bodies. They usefully describe what is recommended in fields such as
requirements elicitation, design, verification, validation, maintenance, operation, etc. and
contribute to the improvement of current safety demonstration practices.

However, the process of approving software for executing safety and safety related functions
is far from trivial, and will continue to evolve. Reviews of licensing approaches showed that,
except for procedures, which formalise negotiations between licensee and licensor, no
systematic method is defined or in use in many member countries for demonstrating the safety
of a software based system.

A systematic and well-planned approach may contribute to improve the quality of the safety
demonstration, and reduce its costs. The benefit can at least be three-fold:

– To allow the parties involved to focus attention on the specific safety issues raised by the
system and on the corresponding specific system requirements as defined in chapter 2.1
that must be satisfied;

– To allow system requirements to be prioritised, and resources to be allocated on their
demonstration accordingly;

– To organise system requirements so that the necessary arguments and evidence are limited
to what appears to be arguably necessary and sufficient to the parties involved.

A safety demonstration addresses the properties of a particular system. It is therefore specific
and carried out on a case-by-case basis, and not once and for all. This does not mean,
however, that the demonstration could be performed “à la carte” with a free choice of means
and objectives.

 25SSM 2010:01

1.1.2 Issues Involved

1.1.2.1 Various approaches are possible

There are several approaches offered to a licensee and a regulator for the demonstration of the
safety of a computer based system. The demonstration may be conditioned on the provision
of evidence that a set of agreed rules, laws, standards, or design and assessment principles are
complied with (rule-based approach). The demonstration may also be conditioned on the
success of a pre-defined method, such as the “Three Legs” approach [6]. It may also be
conditioned on the provision of evidence that certain specific residual risks are acceptable, or
that certain safety properties are achieved (goal based approach). Any combination of these
approaches is of course possible. For instance, compliance with a set of rules or a standard
can be invoked as evidence to support a particular system requirement.

None of these approaches is without problems. The law-, rule-, design principle- or standard-
compliance approach often fails to demonstrate convincingly by itself that a system is safe
enough for a given application, thereby entailing licensing delays and costs. The three-leg
approach may suffer from the same shortcomings. By collecting evidence in three different
and orthogonal directions, which remain unrelated, one may fail to convincingly establish a
system property. The safety goal approach requires ensuring that the initial set of goals,
which is selected, is complete and coherent.

1.1.2.2 The plant-system interface cannot be ignored

Most safety requirements are determined by the application in which the computer and its
software are embedded. What is required from the computer implementation is essentially to
be an available and reliable implementation of those requirements. Besides, many pertinent
arguments to demonstrate safety – for instance the provision of safe states and safe failure
modes – are not provided by the computer system design and implementation, but are
determined by the environment and the role the system is expected to play in it. Guidance on
the safety demonstration of computer based systems often concentrates on the V&V problems
raised by the computer and software technology and pays little attention to a top-down
approach starting with the environment-system interface.

 26 SSM 2010:01

1.1.2.3 The system lifetime must be covered

Safety depends not only on the design, but also, and ultimately, on the installation of the
integrated system, on operational procedures, on procedures for (re) calibration, (re)
configuration, maintenance, even for decommissioning in some cases. A safety case is not
closed before the actual behaviour of the system in real conditions of operations has been
found acceptable. The safety justification of a software based system therefore involves more
than a code correctness proof. It involves a large number of various claims spanning the
whole system life, and well known to application engineers, but often not sufficiently taken
into account in the computer system design.

Besides, as already said in the introduction, evidence to support the safety demonstration of a
computer based system is produced throughout the system life cycle, and evolves in nature
and substance with the project.

1.1.2.4 Safety Demonstration

The key issue of concern is how to demonstrate that the system requirements as defined in
chapter 2.1 have been met. Basically, a safety demonstration is a set of arguments and
evidence elements which support a selected set of claims on the dependability – in particular
the safety – of the operation of a system important to safety used in a given plant
environment. (see figure below and e.g. [2]).

Claims identify functional and/or non-functional properties that must be satisfied by the
system. A claim may require the existence of a safe state, the correct execution of an action, a
specified level of reliability or availability, etc… The set of claims must be coherent and as
complete as possible. By itself, this set defines what the expected dependability of the system
is. Claims can be decomposed and inferred from sub-claims at various levels of the system
architecture, design and operations. Claims may coincide with the computer based system
requirements that are discussed in chapter 2.1. They may also pertain to a property of these
requirements (completeness, coherency, soundness) or claim an additional property of the
system that was not part of the initial requirements, as in the case of COTS for instance.

 27SSM 2010:01

Claims and sub-claims are supported by evidence components that identify plausible facts or
data, which are taken for granted and agreed upon by all parties involved in the safety case.
As already said in the introduction, a number of distinguishable and independent types of
evidence exist on which the demonstration can be constructed: evidence related to the quality
of the development process; evidence related to the adequacy of the product specifications
and the correctness of its implementation, and evidence of the competence and qualifications
of the staff involved in all of the system life cycle phases. In addition, convincing operating
experience may be needed to support the safety demonstration of pre-existing software (see
Chapter 1.14). These types of evidence may not be merely juxtaposed. They must be
organised so as to achieve the safety demonstration.

“Plausibility” means that there is confidence beyond any reasonable doubt in the axiomatic
truth of these facts and data, without further evaluation, quantification or demonstration.
Such a confidence inevitably requires a consensus of all parties involved to consider the
evidence as being unquestionable.

An argument is the set of evidence components that support a claim, together with a
specification of the relationship between these evidence components and the claim.

claim

Sub-claim conjunction

Argument

Sub-claim

evidence

Sub-claim

evidence

evidence

evidence

 Sub-claim

evidence

inference

 28 SSM 2010:01

1.1.2.5 System descriptions and their interpretations are important

Safety is a property, the demonstration of which – in most practical cases – cannot be strictly
experimental and obtained by e.g. testing or operational experience – especially for complex
and digital systems. For instance, safety does not only include claims of the type: “the class X
of unacceptable events shall occur less than once per Y hours in operation”. It also includes
or subsumes the claim that the class of events X is adequately identified, complete and
consistent. Thus, safety can only be discussed and shown to exist using accurate descriptions
of the system architecture, of the hardware and software design of the system behaviour and
of its interactions with the environment, and models of postulated accidents. These
descriptions must be unambiguously understood and agreed upon by all those who have
dependability case responsibilities: users, designers and assessors. This is unfortunately not
always the case. Claims for dependability – although usually based on a huge engineering and
industrial past experience – may be only poorly specified. The simplifying assumptions
behind the descriptions that are used in the system representations and for the evaluation of
safety are not always sufficiently explicit. As a result one should be wary of attempts to
“juggle with assumptions” (i.e. to argue and interpret system, environment and/or accident
hypotheses in order to make unfounded claims of increased safety and/or reliability) during
licensing negotiations. A need exists in industrial safety cases for more attention to be paid to
the use of accurate descriptions of the system and of its environment.

For the analysis and verification of the software itself, no additional model is needed since the
software and/or the executable code are the most accurate available descriptions of the
behaviour of the computer.

1.1.3 Common Positions

1.1.3.1 The licensee shall produce a safety plan as early as possible in the project, and shall
make this safety plan available to the regulator.

1.1.3.2 This safety plan shall comply with the preliminary recommendations given in the
section “Safety Plan” of the introduction.

1.1.3.3 The safety plan shall define the activities to be undertaken in order to demonstrate
that the system is adequately safe, the organisational arrangements including independence of
those undertaking the safety demonstration activities and the programme for completion of the
activities.

1.1.3.4 In particular, the safety plan shall identify how the safety demonstration will be
achieved. If the safety demonstration is based on a claim/evidence/argument, then the safety
plan shall identify the claims that are made on the system, the types of evidence that are
required, the arguments that are applied, and when this evidence shall be produced.

 29SSM 2010:01

1.1.3.5 The safety demonstration shall identify a complete and consistent set of
requirements that need to be satisfied. Completion means, in particular, that these
requirements shall at least address:

– The validity of the functional and non-functional system requirements and the adequacy of
the design specifications; those must satisfy the plant/system interface safety requirements
and deal with the constraints imposed by the plant environment on the computer based
system;

– The correctness of the design and the implementation of the embedded computer system
for ensuring that it performs according to its specifications;

– The operation and maintenance of the system to ensure that the safety claims and the
environmental constraints will remain properly dealt with during the whole lifetime of the
system. This includes claims that the system does not display behaviours unanticipated by
the system specifications, or that potential behaviours outside the scope of these
specifications will be detected and their consequences mitigated.

1.1.3.6 When upgrading an old system, with a new digital system, it shall be demonstrated
that the new system preserves the existing plant safety properties, e.g. real-time performances,
response time.

1.1.3.7 If a claim/evidence/argument structure is followed, the safety demonstration shall
accurately document the evidence that supports all claims, as well as the arguments that relate
the claims to the evidence.

1.1.3.8 The plan shall precisely identify the regulations, standards and guidelines, which
are used for the safety demonstration. The applicability of the standards to be used shall be
justified, with potential deviations being evaluated and justified.

1.1.3.9 When standards are intended to support specific claims or evidence components,
this shall be indicated. Guarantee shall also be given that the coherence of the regulations,
standards, or guidelines that are used is preserved.

1.1.3.10 If a claim/evidence/argument structure is followed, the basic assumptions, the
necessary descriptions and interpretations, which support the claims, evidence components,
arguments and relevant incident or accident scenarios, shall be precisely documented in the
safety demonstration.

1.1.3.11 The system descriptions used to support the safety demonstration shall be accurate
descriptions of the system architecture, system/environment interface, the system design, the
system hardware and software architecture, and the system operation and maintenance.

1.1.3.12 The safety plan and safety demonstration shall be updated and maintained in a valid
state throughout the lifetime of the system.

 30 SSM 2010:01

 31

1.1.4 Recommended Practices

1.1.4.1 A safety claim at the plant-system interface level and its supporting evidence can
be usefully organised in a multi-level structure. Such a structure is based on the fact that a
claim for prevention or for mitigation of a hazard or of a threat at the plant-system interface
level necessarily implies sub-claims of some or all of three different types:

– Sub-claims that the functional and/or non-functional requirement specifications of how
the system has to deal with the hazard/threat are valid,

– Sub-claims that the system architecture and design correctly implement these
specifications,

– and sub-claims that the specifications remain valid and correctly implemented in operation
and through maintenance interventions.

The supporting evidence for a safety claim can therefore be organised along the same
structure. It can be decomposed into the evidence components necessary to support the
various sub-claims from which the dependability claim is inferred.

 * * *

SSM 2010:01

1.2 System Classes, Function Categories and
Graded Requirements for Software

1.2.1 Rationale

Software is a pervasive technology increasingly used in many different nuclear applications.
Not all of this software has the same criticality level with respect to safety. Therefore not all
of the software needs to be developed and assessed to the same degree of rigour.

Attention in design and assessment must be weighted to those parts of the system and to those
technical issues that have the highest importance to safety.

This chapter discusses the assignment of categories to functions and of classes to systems,
components and software in relation to their importance to safety. We also consider the
assignment of “graded requirements” for the qualification of the software development
process, of the software products of these processes, and on the amount of verification and
validation necessary to reach the appropriate level of confidence that software is fit for
purpose.

To ensure that proper attention is paid to the design, assessment, operation and maintenance
of the systems important to safety, all systems, components and software at a nuclear facility
should be assigned to different safety classes. Graded requirements may be advantageously
used in order to balance the software qualification effort.

Thus levels of software relaxations must always conform and be compatible with levels of
safety. The distinction between the safety categories applied to functions, classes applied to
systems etc. and graded requirements for software qualification does not mean that they can
be defined independently from one another. The distinction is intended to add some
flexibility. Usually, there will be a one to one mapping between the safety categories applied
to functions, classes applied to systems etc. and the graded requirements applied to software
design, implementation and V&V.

1.2.1.1 System Classification

This document focuses attention on computer based systems used to implement safety
functions (i.e. the functions of the highest safety criticality level); namely, those systems
classified by the International Atomic Energy Agency as “safety systems”. The task force

 33SSM 2010:01

found it convenient to work with the following three system classes (cf. IAEA NS-R-1 and
NS-G-1.3):

– safety systems

– safety related systems

– systems not important to safety.

The three system classes have been chosen for their simplicity, and for their adaptability to
the different system class and functional category definitions in use in EUR countries and
elsewhere.

The three-level system classification scheme serves the purpose of this document, which is
principally focusing on software of the highest safety criticality (i.e. the software used in
safety systems to implement safety functions). Software of lower criticality is addressed in
chapter 1.11, and elsewhere when relaxations on software requirements appear clearly
practical and recommendable.

The rather simple correspondence between the three system classes above, the IAEA system
classes and the IEC 61226 function categories can be explained as follows. Correspondence
between the IEC function categories and the IAEA system classes can be approximately
established by identifying the IAEA safety systems class with IEC 61226 category A, and
coalescing categories B and C of the IEC and mapping them into IAEA safety related systems
class. This is summarized in Table 1 below.

Table 1: Correspondence between categories, classes and graded requirements

Categories of functions Classes of systems Examples of graded requirements
for software

IEC61226 This document IAEA and this document IEC and this document
A Safety functions

B Safety related

functions

C Safety related

functions

Functions not important to safety

Safety systems

Safety related systems

Safety related systems

Systems not important to
safety

– IEC 60880;
– Table 2 and Table 3 (chapter 1.11)

in this document;

– IEC 62138 chapter 6;
– Table 2 and Table 3 (chapter 1.11)

in this document;

– IEC 62138 chapter 5;
– Table 2 and Table 3 (chapter 1.11)

in this document.

 34 SSM 2010:01

1.2.1.2 Graded Requirements

The justification for grading software qualification requirements is given by common position
1.2.3.9, namely the necessity to ensure a proper balance of the design and V&V resources in
relation to their impact on safety. Different levels of software requirements are thus justified
by the existence of different levels of safety importance, and there is indeed no sense in
having the former without the latter. In this document, we use the term “graded
requirements” to refer to these relaxations. Graded requirements should of course not be
confused with the system and design requirements discussed in chapter 2.1.

This document does not attempt to define complete sets of software requirement relaxations.
It does, however, identify relaxations in requirements that are found admissible or even
recommendable, and under which conditions. These relaxations are obviously on software
qualification requirements, never on safety functions.

It is reasonable to consider relaxations on software qualification requirements for the
implementation of functions of lower safety category, although establishing such relaxations
is not straightforward. The criteria used should be transparent and the relaxations should be
justifiable.

Graded licensing requirements and relaxations for safety related software are discussed in
chapter 1.11 where an example of classes and graded requirements is given (see
recommended practice 1.11.4.2).

1.2.2 Issues Involved

1.2.2.1 Identification and assignment of system classes, function categories and
graded requirements

Adequate criteria are needed to define relevant classes and graded requirements for software
in relation to importance to safety. At plant level the plant is designed into systems to which
safety and safety related functions are assigned. These systems are subdivided, in sufficient
detail, into structures and components. An item that forms a clearly definable entity with
respect to manufacturing, installation, operation and quality control may be regarded as one
structure or component. Every structure and component is assigned to a system class or to the
class “not important to safety”. Identification of the different types of software and their roles
in the system is needed to assign the system class and corresponding graded requirements.

In addition to the system itself, the support and maintenance software also need to be assigned
to system classes with adequate graded requirements.

 35SSM 2010:01

Software tools also have an impact on safety (see chapter 1.5 and the common positions
therein). The safety importance of the tools depends on their usage: in particular, on whether
the tool is used to directly generate online executed software or is used indirectly in a
supporting role, or is used for V&V.

1.2.2.2 Criteria

Adequate criteria are needed to assign functions to relevant categories in relation to their
importance to safety and, correspondingly, to identify adequate software graded requirements.

When developing the criteria for graded requirements for the qualification of software
components it is not sufficient to assess the function in the accomplishment of which the
component takes part or which it ensures. The impact of a safety or safety related function
failure during the normal operation of the plant or during a transient or an accident must also
be considered. In particular, attention must be paid to the possible emergence of an initiating
event that could endanger nuclear safety and the prevention of the initiating event's
consequences.

In addition, the following factors may have an impact on the graded requirements imposed on
a software component and should be taken into account:

– availability of compensatory systems,

– possibilities for fault detection,

– time available for repair,

– repair possibilities,

– necessary actions before repair work,

– the reliability level that can possibly be granted to the component by the graded
requirements of the corresponding class.

1.2.2.3 Regulatory approval

Safety categorisation, classification and a scheme of graded requirements for the qualification
of software can be used as a basis to define the need for regulatory review and regulatory
requirements.

 36 SSM 2010:01

1.2.3 Common Position

System Classes

1.2.3.1 The importance to safety of a computer based system and of its software is
determined by the importance to safety of the functions it is required to perform.
Categorisation of functions shall be based on an evaluation of the importance to safety of
these functions. This functional importance to safety is evaluated by a plant safety analysis
with respect to the safety objectives and the design safety principles applicable to the plant.

1.2.3.2 The consequences of the potential failure modes of the system shall also be
evaluated. This evaluation is more difficult because software failures are hard to predict.
Assessment of risk associated with software shall therefore be primarily determined by the
potential consequences of the system malfunctioning, such as its possible failures of
operation, misbehaviours in presence of errors, or spurious operations (system failure
analysis).

1.2.3.3 The classes associated with the different types of software or components of the
system must be defined in the safety plan at the beginning of the project.

1.2.3.4 Any software performing a safety function, or responsible within a safety system
for detecting the failure of that system, is in the safety systems class.

1.2.3.5 As a general principle, a computer based system important to safety and its
software is a safety related system if its correct behaviour is not essential for the execution of
safety functions (e.g. corresponding to IEC 61226 category A functions – see Table 1 above)

1.2.3.6 Common position 1.12.3.7 is applicable.

1.2.3.7 Any software generating and/or communicating information (for example, to load
calibration data, parameter or threshold modified values) shall be of at least the same class as
the systems that automatically process this information, unless

– the data produced is independently checked by a diverse method, or

– it is demonstrated (for example using software hazard analysis) that the processing
software and the data cannot be corrupted by the generating/communicating software.
(Common position 2.8.3.3.4 restates this position for the loading of calibration data.)

1.2.3.8 Any software processing information for classified displays or recorders shall be of
at least the same class as the display or the recorder.

 37SSM 2010:01

Graded Requirements

1.2.3.9 The licensee shall have criteria for grading requirements for different types of
software or components to ensure that proper attention is paid in the design, assessment,
operation and maintenance of the systems important to safety.

1.2.3.10 Notwithstanding the existence of graded requirements, the licensee shall determine
which development process attributes are required and the amount of verification and
validation necessary to reach the appropriate level of confidence that the system is fit for
purpose.

1.2.3.11 The graded requirements shall take into account developments in software
engineering.

1.2.3.12 The definition of graded requirements can result from deterministic analysis,
probabilistic analysis or from both of these methods. The adequacy of the graded
requirements shall be justified, well documented and described in the safety plan.

1.2.3.13 The graded requirements shall coherently cover all software lifecycle phases from
computer based system requirement specifications to decommissioning of the software.

1.2.3.14 The graded requirements (defined in section 1.2.1.2) that are applicable to safety
systems include all “shall” requirements of the IEC 60880, ref. [11].

1.2.3.15 The risk of common cause failure shall remain a primary concern for
multitrain/channel systems utilising software. Requirements on defence against common
cause failure, on the quality of software specifications, and on failure modes, effects and
consequence analysis (FMECA) of hardware and software shall not be relaxed without careful
consideration of the consequences.

1.2.4 Recommended Practices

System Classes

1.2.4.1 The functional criteria and the category definition procedures of IEC 61226 are
recommended for the identification of the functions, and hence systems, that belong to the
most critical class safety systems and that – with the exception of chapter 1.11 – are under the
scope of this document. The examples of categories given in the annex A of this IEC standard
are particularly informative and useful.

1.2.4.2 It may be reasonable to consider the existence of a back-up by manual intervention
or by another item of equipment in the determination of the requirements applied to the design
of a safety system.

 38 SSM 2010:01

 39

Graded Requirements

1.2.4.3 Relaxations and Exceptions:
For reasons already explained above, the definition of distinct requirements per class and of
exceptions and relaxations for classes of lower importance to safety is difficult when software
is involved.
However, if reliability targets are used, exceptions to the common position 1.2.3.14 above can
be acceptable. For example, if reliability targets derived from a probability assessment are
used, certain IEC 60880 requirements can be relaxed for software of class safety system for
which the required reliability is proven to be low, i.e. for example in the range where the
probability of failure on demand is between 10-1 and 10-2. An example of such relaxations
can be applicable to air-borne radiation detectors used as an ultimate LOCA (Loss of Coolant
Accident) detection mechanism for containment isolation in the event of a failure of the
protection system to detect this LOCA.
Relaxations to the standard IEC 60880 and to its requirements for computer based systems of
the safety related systems class are dealt with in chapter 1.11.

1.2.4.4 In all cases, a system failure analysis should be performed to assess the
consequences of the potential failures of the system. It is recommended that this failure
analysis be performed on the system requirement specifications, rather than at code level, and
as early as possible so as to come to an agreement with the licensee on graded requirements.

1.2.4.5 Only design and V&V factors which affect indirectly the behaviour of programmed
functions should be subject to possible relaxations: e.g. validation of development tools, QA
and V&V specific plans, independence of V&V team, documentation, and traceability of
safety functions in specifications.

1.2.4.6 In agreement with 1.11.2.3 (safety related system class equipment), a software
based system intended to cover less frequent initiating event demands can be assigned
adequate less stringent graded requirements if and only if it is justified by accident analysis.

 * * *

SSM 2010:01

1.3 Reference Standards

“Cuando creíamos que teníamos todas las respuestas,

de pronto, cambiaron todas las preguntas”

Mario Benedetti

This document does not endorse industrial standards. Standards in use vary from one country
and one project to another.

Many regulators do not “endorse” industrial standards in their whole. As a matter of fact,
many national regulations ask for the standards used in a project design and implementation
to be specified and their applicability justified, with potential deviations being evaluated and
justified (see common position 1.1.3.8 in chapter 1.1)

The applicable standards mentioned below in sections 1.3.1 and 1.3.2 are standards which are
or will be used by members of the Task Force as part of their assessment of the adequacy of
safety systems.

A system is regarded as compliant with an applicable standard when it meets all the
requirements of that standard on a clause by clause basis, sufficient evidence being provided
to support the claim of compliance with each clause.

However, in software development, compliance with an applicable standard may be taken to
mean that the software is compliant with a major part of the standard. Any non-compliance
will then need to be justified as providing an acceptable alternative to the related clause in the
standard.

1.3.1 Reference standards for the software of safety systems in Belgium,
Finland, Germany, Spain, Sweden and UK

At the time of writing this revision, the only common reference standard for the software of
safety systems in all states represented in the task force is the IEC 60880 (1986) standard:
“Software for computers in the safety systems of nuclear power stations” 1st edition [11].

 41SSM 2010:01

1.3.2 Additional reference standards and guidelines for safety systems in
the member states represented in the task force

Belgium

– ANSI/IEEE-ANS-7-4.3.2, 2003 revision: “IEEE criteria for Digital Computers in Safety
Systems of Nuclear power generating Stations” as endorsed by revision 1 (draft regulatory
guide DG-1130, December 2004) of proposed revision 2 of US NRC Regulatory Guide
1.152: “Criteria for programmable digital computer system software in safety related
systems of NPPs”.

– IEC 61226, Edition 2 (2005) “Nuclear power plants – Instrumentation and control systems
important to safety – Classification.”

Finland

– Guide YVL 1.0 Safety criteria for design of nuclear power plants, Helsinki 12.1.1996.

– Guide YVL 2.0 Systems design for nuclear power plants, Helsinki 1.7.2002.

– Guide YVL 2.1 Nuclear power plant systems, structures and components and their safety
classification, Helsinki 26.6.2000.

– Guide YVL 5.5 Instrumentation systems and components at nuclear facilities, Helsinki
13.9.2002.

Germany

– RSK Guidelines, Chapter 7.6, amended August 1996.

– DIN IEC 61226, 2nd edition (2005).

– DIN IEC 62138 (2004).

– DIN IEC 60880 (2007).

– KTA. 3503, November 2005, Type testing of electrical modules for the safety related
instrumentation and control system.

– DIN VDE 0801, January 1990, Grundsätze für Rechner in Systemen mit
Sicherheitsaufgaben.

– DIN V 19250 Grundlegende Sicherheitsbetrachtungen für MSR-Schutzeinrichtungen.
January 1989.

– VDI/VDE 3527 Kriterien zur Gewährleistung der Unabhängigkeit von Sicherheits-
funktionen bei der Leittechnik-Auslegung.

 42 SSM 2010:01

Spain

– UNESA CEN-6 “Guía para la implantación de sistemas digitales en centrales nucleares”,
Revision 0, May 2002.

– UNE 73-404-91. “Garantia de la Calidad en los Sistemas Informaticos Aplicados a
Instalaciones Nucleares”.

– CSN 10.9 Safety Guide. “Garantia de Calidad de las Aplicaciones Informaticas
Relacionadas con las Instalaciones Nucleares”.

– ANSI/IEEE-ANS 7-4.3.2. “IEEE Criteria for Digital Computers in Safety Systems of
Nuclear Power Generating Stations”, as endorsed by USNRC Regulatory Guide 1.152
“Criteria for Programmable Digital Computer System Software in Safety Systems of
NPPs”.

– USA 10 CFR 50.59 “Changes, tests and experiments”, particularly as derived for
upgrading projects from EPRI TR-102348, Revision 1, NEI 01-01 “A Revision of EPRI
TR-102348 to Reflect Changes to the 10 CFR 50.59 Rule”, according to USNRC
Regulatory Issue Summary 2002-22.

– RSK Guidelines, Chapter 7.6, amended August 1996.

Sweden

– IAEA Safety Guide NS-G-1.1

– IEC 61226

– IEC 61513

The above standards are applicable in most cases, but are not mandated by the regulator.
Standards are selected on a case-by-case basis and this selection shall be fully justified in the
safety demonstration.

UK

– T/AST/046 Technical Assessment Guide “Computer Based Systems”.

– IAEA Safety Guide NS-G-1.1 “Software for Computer Based Systems Important to Safety
in Nuclear Power Plants”.

– IEC 61513:2001 “Nuclear Power Plants – Instrumentation and control for systems
important to safety – General requirements for systems”.

 43SSM 2010:01

1.3.3 Related Standards, Guidelines and Technical Documents

Guides and standards are continuously in evolution. At the time of writing this report, the
International Atomic Energy Agency (IAEA) and the IEC have issued a number of relevant
reference documents.

In 2002 and 2000, the International Atomic Energy Agency (IAEA) published the safety
guides entitled “Instrumentation and control systems important to safety in nuclear power
plants” (NS-G-1.3) and “Software for Computer-Based Systems Important to Safety in
Nuclear Power Plants” (NS-G-1.1), both giving guidance on the evidence to be provided at
each phase of the software lifecycle to demonstrate the safety of the computer based system.
The intention is to assist the licensing process by the provision of evidence.

In addition, the IAEA produced and published technical documents concerning distinct safety
and licensing aspects of digital systems for nuclear installations, such as “Safety Assessment
of Computerized Protection Systems” (IAEA-TECDOC-780, 1994), “ESRS Guidelines for
Software Safety Reviews: Reference document for the organization and conduct of
Engineering Safety Review Services (ESRS) on software important to safety in nuclear power
plants” (IAEA Services Series No. 6, 2000), “Harmonization of the licensing process for
digital instrumentation and control systems in nuclear power plants” (IAEA-TECDOC-1327,
2002), “Solutions for Cost Effective Assessment of Software Based Instrumentation and
Control Systems in Nuclear Power Plants” (IAEA TECDOC Series No. 1328, 2002), and the
Technical Report 397 “Quality Assurance for Software important to safety which addresses
graded requirements for software.”

The IEC 61513 standard “Instrumentation and control for systems important to safety –
General requirements for systems” (2001) covers the system aspects of computer based I&C.
It acts as a link document for a number of standards, including IEC 60880 “Nuclear power
plants – Instrumentation and control systems important to safety – Software aspects for
computer based systems performing category A functions” (second edition 2006), IEC 60987
“Nuclear power plants – Instrumentation and control important to safety – Hardware design
requirements for computer-based systems” (second edition 2007), and IEC 61226
“Classification of instrumentation and control functions” (second edition 2005). The IEC
61513 standard contains the top level requirements on system functions, architecture and I&C
system design which are of particular importance to the software specification.

The second edition of IEC 61226 contains criteria to rank I&C functions in accordance with
their significance to safety. It comprises main requirements on I&C functions which are
attached to three safety categories (A, B, and C).

 44 SSM 2010:01

 45

The second edition of IEC 60880 comprises both the first edition issued 1986 and its
supplement issued 2000 with updated requirements covering the whole software life cycle
(described in IEC 61513). The new edition also contains informal annexes on different special
software qualification aspects such as defence against common cause failures, tools for
software development and qualification, as well as requirements on pre-existing software.

The IEC 62138 standard “Software aspects for computer-based systems performing category
B or C functions” (2004) contains graded requirements for software implementing category B
and C functions (in the terminology of IEC 61226).

The IEC 62340 standard “Nuclear power plants – Instrumentation and control systems
important to safety – Requirements for coping with common cause failure” (2007) contains,
amongst others, distinct requirements on software, e.g. linked to software robustness,
tolerance against postulated latent failure software errors, as well as software maintenance and
security.

The second edition of the IEC 60987 standard contains reduced system and project level
requirements. It also contains additional requirements on topics such as pre-developed
hardware equipment from a generic platform, new function-based statements on the single
failure criteria, as well as guidance on the use of advanced hardware designs with embedded
micro-codes.

In the mid 1980’s IEC set up two working groups to produce a standard on programmable
electronic systems. This international standard is now known as IEC 61508 and is entitled
“Functional Safety: Safety-related systems”. The standard covers the determination of safety
integrity levels (SILs) and the means of achieving these levels in terms of requirements on
I&C systems, hardware and software. The standard contains seven parts covering, for
example, management, hardware and software requirements. Based on the SILs, part 3
contains graded requirements on the software qualification.

IEC regards IEC 61508 as a generic standard with the intention that, using IEC 61508 as a
basis, the various industry sectors will produce their own specific standards. This has been
recognised by the IEC working group producing the nuclear standards (see above) and is
being accommodated.

More information on the current work and publications of the IAEA and IEC can be found on
their websites:

– http://www-pub.iaea.org/MTCD/publications/series1.asp

– http://www.iec.ch/ourwork/iecpub-e.htm

 * * *

SSM 2010:01

http://www-pub.iaea.org/MTCD/publications/series1.asp
http://www.iec.ch/ourwork/iecpub-e.htm

1.4 Uses and Validation of Pre-existing Software (PSW)

1.4.1 Rationale

The inclusion of pre-existing software (PSW) components into a computer based system may
not only be beneficial for productivity but may also increase safety if introduced in a proper
way. The benefit stems from the fact that PSW components have often been used in many
applications, and their operating experience, when assessable and representative, can be taken
into account. Reusable software components may have been developed to suitably high
standards in other industries for use in safety critical applications and, therefore, may be
reusable in the nuclear industry. Licensees may wish to make use of such software given that
the appropriate assessment has been undertaken.

1.4.2 Issues involved

1.4.2.1 The functional and non-functional (e.g. dependability, performance) behaviour of
the PSW is often not clearly defined and documented.

1.4.2.2 It is doubtful that evidence will be available to demonstrate that the PSW has been
developed and produced in accordance with a defined safety life cycle such as outlined in IEC
60880.

1.4.2.3 The documentation and data on operational experience of the PSW are often not
adequate enough to provide the evidence which would be required to compensate for the lack
of knowledge on the PSW product and on its development process.

1.4.2.4 As a result of issues 1.4.2.1, 1.4.2.2 and 1.4.2.3, acceptance criteria and procedures
of investigation for demonstrating fitness for purpose of PSW for a specific application may
be difficult to put in place.

1.4.2.5 The operational experience related to the PSW may not be in exact correspondence
with that of the intended application. Therefore, software paths of unknown quality may be
invoked by the application.

 47SSM 2010:01

1.4.3 Common Position

1.4.3.1 The functions, which have to be performed by the PSW components, shall be
clearly identified, and the impact on safety of these functions shall be evaluated, including a
PSW failures analysis. Special attention shall be paid to possible side-effects and to failures
that may occur at the interfaces between the PSW and the user and/or other software
components.

1.4.3.2 The PSW components to be used shall be clearly identified including their code
version(s).

1.4.3.3 The interfaces through which the user or other software invokes PSW modules
shall be clearly identified and thoroughly validated. Evidence shall be given that no other
calling sequence can be exercised, even inadvertently.

1.4.3.4 The PSW shall have been developed and shall be maintained according to good
software engineering practice and QA standards appropriate to its intended use.

1.4.3.5 For safety systems, the PSW shall be subjected to the same assessment (analysis
and review) of the final product (not of the production process) as new software developed for
the application. If necessary, reverse engineering shall be performed to enable the full
specification of the PSW to be evaluated.

1.4.3.6 If modifications of PSW components are necessary, the design documentation and
the source code of the PSW shall be available.

1.4.3.7 The information required to evaluate the quality of the PSW product and of its
assessment and development processes shall be available; this information shall be sufficient
to assess the PSW to the required level of quality.

1.4.3.8 For acceptance the following actions shall be taken:

1.4.3.8.1 Verify that the functions performed by the PSW meet all of the requirements
expressed in the safety system requirement specifications and in other applicable software
specifications.

1.4.3.8.2 Verify that the PSW functions that are not required by the safety system
requirement specifications cannot be invoked and adversely affect the required functions, for
example through erroneous inputs, interruptions, and misuses.

1.4.3.8.3 Verify that, if PSW functions are omitted, this omission has no adverse impact on
safety.

1.4.3.8.4 Perform a compliance analysis of the PSW design against the applicable standards
requirements (e.g. IEC 60880).

 48 SSM 2010:01

1.4.3.8.5 The PSW functions intended for use shall be validated by testing. The tests may
include tests performed by the vendor.

1.4.3.8.6 Ensure that the PSW functions cannot be used by the safety system, by other
software or by the users in ways that are different from those which have been specified and
tested (if necessary through the implementation of pre-conditions, locking mechanisms or
other protections).

1.4.3.9 If credit is given to feedback experience in the licensing process, sufficient
information on operational history and failure rates shall be available. Feedback experience
shall be properly evaluated on the basis of an analysis of the operating time, error reports and
release history of systems in operation. This feedback experience shall also be based on use
of the PSW under evaluation in identical operational profiles. This operating experience shall
be based on the last release except if an adequate impact analysis shows that previous
experience based on unchanged parts of the PSW is still valid because these parts have been
unaffected by later releases.

1.4.3.10 Errors that are found during the validation of the PSW shall be analysed and taken
into account in the acceptance procedure.

1.4.4 Recommended Practices

1.4.4.1 Operational experience may be regarded as statistically based evidence
complementary to validation, or to the verification of system software (operating systems,
communication protocols, standard functions).

1.4.4.2 Data for the evaluation of the credit that can be given to feedback experience
should be collected, in terms of site information and operational profiles, demand rate and
operating time, error reports and release history.

 49SSM 2010:01

 50

Site information and operational profile data should include:

– Configuration of the PSW;
◦ Functions used;
◦ Types and characteristics of input signals, including the ranges and, if needed, rates of

change;
◦ User interfaces;
◦ Number of systems.

– Demand rate and operating time data should include:
◦ Elapsed time since first start-up;
◦ Elapsed time since last release of the PSW;
◦ Elapsed time since last severe error (if any);
◦ Elapsed time since last error report (if any);
◦ Types and number of demands exercised on the PSW.

– Error reports should include:
◦ Descriptions and dates of errors, severity;
◦ Descriptions of fixes.

– Release history should include:
◦ Dates and identifications of releases;
◦ Descriptions of faults fixed, functional modifications or extensions;
◦ Pending problems.

The data referenced above should be recorded along with the identification of the release of
the PSW and its associated configuration.

 * * *

SSM 2010:01

1.5 Tools

1.5.1 Rationale

The use of appropriate software tools can increase software product dependability by
improving the reliability of the software development process and the feasibility of
establishing the product’s fitness for purpose. The use of automated tools reduces the amount
of clerical effort required, and hence the risk of introducing errors in the development process.
Tools can automatically check for adherence to rules of construction and standards, generate
proper records and consistent documentation in standard formats, and support change control.
This assures process reliability which is important for achieving product dependability.

Different types of tools can be used to assist in the production of software important to safety:

– Specification tools used for requirements specification capture and elicitation.

– Transformation tools such as code generators and compilers, that transform a text at one
level of abstraction into another, usually lower, level of abstraction.

– Verification and validation tools such as test environments, computer equipment for
periodic testing, static code analysers, test coverage monitors, theorem proving assistants
and simulators.

– Service tools used to produce, modify, display and output software objects in design and
assessment. They include graphic editors, text editors, text formatters, communication
drivers, print spoolers, window arrangement software, etc.

– Infrastructure tools such as development operating systems, public tool interfaces and
version control tools. These tools are potential sources of common errors, as they may
interfere with other tools or corrupt intermediate software products.

1.5.2 Issues Involved

1.5.2.1 The production of software important to safety may be adversely affected by the
use of tools in several ways. For example, transformation tools may introduce faults by
producing corrupted outputs; and verification tools may fail to reveal faults that are already
present, or may be unable to reveal certain types of faults. In addition, faults introduced by
tools may lead to common cause failures.

 51SSM 2010:01

1.5.2.2 It is not easy to determine the required level of tool qualification. Essentially, it
will depend on the safety class of the system for which the tool is being used, on the
consequence of an error in the tool, on the probability that the fault introduced by the tool will
cause a safety significant error in the software being developed, and on the possibilities of the
error remaining undetected by other tools or verification steps.

1.5.3 Common Position

1.5.3.1 The dependability requirements for an individual tool will be a function of its
impact on the target software, and of how other tools or processes may detect errors
introduced by that tool. The combined set of tools used in the development of safety system
software shall provide the same level of dependability as the level required from the target
software.

1.5.3.2 Evidence that the tools used provide the required level of dependability shall be
made available to the licensor.

1.5.3.3 The manufacturer’s quality assurance documentation of tools used in the
development of safety system software shall be available to the licensor. The policy that shall
be adopted when new versions of the tools have to be used shall be precisely described.

1.5.3.4 An analysis shall be applied to the transformation tools used in the software
development process to identify the nature of the faults they can introduce in the target
software, and their consequences.

1.5.3.5 For safety system software, only tools that are validated against the level of
dependability requirements defined in common position 1.5.3.1 here above shall be used.
Safety system software produced by a transformation tool shall be subjected to verification,
and to validation on the target system. The use of a transformation tool for safety system
software without further review of its output shall not be accepted unless special justification
is provided.

1.5.3.6 The vendor of a tool shall maintain and update the tool experience feedback and
inform users of all anomalies discovered by users.

1.5.3.7 The strategy for tool use and validation shall be defined in the software quality
plan.

1.5.3.8 The programming techniques which are used in combination with transformation
tools shall comply with the relevant requirements of chapter 2.4.

 52 SSM 2010:01

1.5.4 Recommended Practices

1.5.4.1 To validate a tool, the following possibilities are recommended:

– the output of a tool can be verified by inspection;

– the behaviour of the output of the tool can be verified by running the output on the target
system or on a simulator of this system;

– the tool itself can be certified as processing correctly all valid statements and
combinations thereof contained in the definition of a programming language;

– the tool can be validated by appropriate profiles and a sufficient amount of previous
operational experience.

1.5.4.2 Formal methods which are applied purely manually usually require the involvement
of very well trained humans. In addition, the applied techniques are highly error-prone.
Therefore these formal methods should be supported by tools.

1.5.4.3 The tools should be incorporated into an integrated project support environment to
ensure proper control and consistency. This environment should include suitable data
dictionaries which check for inconsistencies in the data base, ensure the correctness of values
of items entered and enable data to be interrogated. In addition, it should support the
exporting and importing of data to and from other sources.

1.5.4.4 A software tool should be independent from the operating system so as to minimise
the consequences of having to use new versions of this system.

1.5.4.5 Tools of reasonable maturity should be used to support the process of specification
and design, namely:

– tools for editing and type-setting;

– tools for syntax-checking, data type-checking and consistency-checking;

– tools to prove properties of specifications and discharge proof obligations in refining
specifications;

– tools to animate formal specifications;

– tools to derive usable software components automatically from formal specifications;

– configuration control tools to relate specifications to development and to keep track of the
level of verification of each step;

– Static and dynamic analysis tools to complement code inspections and walkthrough
techniques.

 53SSM 2010:01

 54

1.5.4.6 Reverse engineering tools should be used to validate the output of transformation
tools or the output of manual programming processes.

 * * *

SSM 2010:01

1.6 Organisational Requirements

1.6.1 Rationale

Well structured and effective organisations, i.e. licensees, their subcontractors and suppliers,
are regarded as necessary in the management of all aspects of the safety system lifecycle to
reduce the faults introduced into a system, and to ensure that those faults which are found are
handled properly. Throughout the lifecycle, clear delineation of responsibilities and effective
lines of communication plus proper recording of decisions will minimise the risk of incorrect
safety system behaviour. An additional important aspect of an effective management system
is the development of a safety culture which, at all levels within the organisation, emphasises
safety within the organisation. By the use of managerial supervisory and individual practices
and constraints, the safety culture sustains attention to safety through an awareness of the risk
posed by the plant and on the potential consequences of incorrect actions.

1.6.2 Issues involved

Safety Culture

1.6.2.1 If staff is not made aware of the risks posed by the plant and the potential
consequences of those risks then project pressures, inattention to detail and slipshod work
may result in the safety system not being fit for purpose. More significantly, this unfitness
may not be revealed. However, it has to be recognised that although a safety culture is
necessary, it is not regarded, on its own, as sufficient for achieving a safety system that is fit
for purpose.

Delineation of Responsibility

1.6.2.2 If responsibilities are not clearly defined then potentially unsafe activities or system
aspects may not be given their due attention resulting in an increased plant risk.

Staffing Levels

1.6.2.3 Inadequate staffing levels may result in a drastic deterioration in the safety culture
due to staff being overworked and demoralised. Thus, safety issues may not be explored
properly and inadequate designs may result.

 55SSM 2010:01

Staff Competencies

1.6.2.4 If staff do not have the appropriate level of training and experience for the tasks
they are undertaking within the system lifecycle then errors will be introduced. Errors will
fail to be detected and the design may not have the fault tolerance required to prevent failure
of the computer-based safety system.

Project Pressures

1.6.2.5 Project pressures, both financial and temporal, might mean that inadequate safety
provisions are made, or that there is insufficient attention to detail, resulting in a safety system
that is not fit for purpose.

1.6.3 Common Position

1.6.3.1 Reputable companies only shall be used in all stages of the safety system
development life-cycle. Each shall have a demonstrably good track record in the appropriate
field.

1.6.3.2 The licensee, its suppliers and subcontractors shall each provide evidence of the
following:

1.6.3.2.1 Safety Culture:
A written safety policy shall be available demonstrating a commitment to a safety culture
which enhances and supports the safety actions and interactions of all managers, personnel
and organisations involved in the safety activities relating to the production of the safety
system.

1.6.3.2.2 Delineation of Responsibility:
The responsibilities of, and relationships between, all staff and organisations involved in all
aspects of the safety system lifecycle shall be documented and clearly understood by all
concerned.

1.6.3.2.3 Staffing Levels:
It shall be demonstrated, for example by means of appropriate work planning techniques, that
levels of staffing are adequate to ensure that the safety system’s fitness for purpose is not put
in jeopardy through lack of staff effort. There shall be an appropriate balance between the
numbers of hired staff and full time employees.

1.6.3.2.4 Staff Competencies:
Staff shall have the appropriate level of training and experience for the tasks they are
undertaking within the safety system lifecycle. Suitable evidence shall be available for
inspection.

 56 SSM 2010:01

 57

1.6.3.3 Before a system is taken into operation, the licensee should submit written
proposals to the regulatory authority on the methods to be employed (change control,
configuration management, maintenance, data entry etc.) to ensure that the required level of
integrity of the safety system will be maintained throughout its operational life.

1.6.3.4 Project programme recovery strategies shall only be undertaken provided the
dependability of the safety system is not jeopardised.

1.6.4 Recommended Practices

1.6.4.1 Adequate procedures should be in place for controlling contract documentation
between customers and suppliers to ensure that all specification and safety-critical contractual
requirements are properly controlled.

1.6.4.2 The licensee should provide evidence that he is monitoring adequately the safety
aspects of any contract involving a safety system.

1.6.4.3 Project/Operational Pressures:
A licensee safety department staffed by personnel with the appropriate computer
competencies and independent from the project team (for plant under construction or
modification) or from the operating department, should be appointed to reduce the probability
(through regular monitoring of the activities associated with the safety system) that project or
operational pressures will jeopardise the safety systems fitness for purpose. This department
should ensure that the appropriate standards, procedures and personnel are used at all stages
of the software lifecycle to produce the required dependability for the computer-based safety
system. This department should be independent from all project and operational staff such as
designers, implementers, verifiers, validaters, and maintainers.

1.6.4.4 Regular progress reports from the licensee safety department or from an
appropriate body within the licensee’s organisation should be available for inspection
throughout the project lifecycle.

 * * *

SSM 2010:01

1.7 Software Quality Assurance Programme and Plan

1.7.1 Rationale

It is widely accepted that the quality of software cannot be guaranteed by inspection or by
testing of the product alone. In general, the application of a good quality assurance system
provides essential evidence of the quality of the end product. Software is no different: it is
felt that the final software based system will have a higher degree of dependability if the
techniques of quality assurance are used. This is particularly true for any non-trivial software
product since it cannot be exhaustively tested and interpolation between test inputs is not
possible due to the digital nature of the system (a situation that does not pertain with analogue
systems).

Additionally, software quality assurance (SQA) aids the development of a convincing safety
demonstration because it is a structured and disciplined method of ensuring that there is
sufficient auditable evidence.

1.7.2 Issues Involved

1.7.2.1 It is recognised that the reliability of a computer-based safety system cannot be
demonstrated by testing. Therefore, the demonstration of safety has to depend to some degree
on the quality of the processes involved. The major strength of a SQA plan and programme is
that it ensures the procedures and controls are in place to govern and monitor the system
lifecycle thus providing an auditable record of the production process and of the operational
life of the system.

1.7.2.2 The SQA programme and plan do not ensure that the design solution is the most
appropriate unless there are specific requirements in the specification for design reviews by
appropriate personnel.

1.7.2.3 SQA audits, because of their sampling nature do not always detect non-compliance
with procedures and standards.

1.7.2.4 In the majority of cases, the more complex the system and the larger the project, the
more important SQA becomes, because of the ensuing increase in the functional and
organisational complexity.

 59SSM 2010:01

1.7.3 Common Position

1.7.3.1 The Software quality assurance shall cover all aspects of the system lifecycle.

1.7.3.2 A reviewable quality assurance plan and programme for the software aspects of the
safety system, covering all stages of specification, design, manufacture, V&V, installation,
commissioning, operation and maintenance shall be produced at the beginning of the project.
This shall form part of the evidence that the project is being properly controlled. SQA will
ensure that the functional behaviour is traceable throughout the system lifecycle and that the
behaviour has been adequately demonstrated through testing to the required standards.

1.7.3.3 The non-functional attributes of reliability, availability, maintainability and
usability, (which shall have been addressed in the specification of the non-functional
requirements) shall be considered in the SQA programme and plan through a specific
statement on how conformance with the requirements is to be established.

1.7.3.4 The SQA programme and plan shall include a description of the organisational
structure, staff competencies and adequate procedures covering error reporting and corrective
action, computer media control (production and storage), testing, supplier control. Record
keeping and documentation shall be available as the necessary evidence of a well managed
process.

1.7.3.5 The SQA programme and plan shall make reference to standards and written
procedures to control the activities described in 1.6.3.4. These standards and procedures shall
also act as the focus for periodic, independent audits to confirm compliance (this is considered
to be an important aspect, since well documented audits with corrective action notices fully
resolved provide a valuable source of evidence on the quality of the lifecycle processes).

1.7.3.6 The SQA programme and plan shall be accessible to the regulator for review and
acceptance, if required.

1.7.3.7 There shall be SQA audits of compliance with the agreed SQA plan. A
justification shall be provided for the frequency of SQA audits to be performed by the
specialist software auditors.

1.7.3.8 The performance of appropriate reviews shall be required by the SQA process to
ensure that due consideration is given to the completeness and correctness of documents.

1.7.3.9 SQA shall ensure that the tests are systematically defined and documented to
demonstrate that adequate test coverage has been achieved and that the tests are traceable to
the system requirement specifications. When faults are found, SQA shall ensure that
procedures are in place for addressing those faults, and also for ensuring that corrections are
properly implemented.

 60 SSM 2010:01

 61

1.7.4 Recommended Practices

1.7.4.1 It is highly recommended that an agreement be reached at the beginning of the
project between the licensee and the licensor on the SQA programme and plan.

1.7.4.2 Whenever possible, audits should be performed using aids and tools which assist in
identifying compliance with standards and procedures, and record anomalies and corrective
action notices.

1.7.4.3 The standard IEEE Std 730.1-2002, “Standard for Software Quality Assurance
Plans” is recommended.

 * * *

SSM 2010:01

1.8 Security

1.8.1 Rationale

The objective of information and system security is to guarantee and preserve the
dependability of safety systems by preventing security incidents or by minimising their
impacts. In this context, security seeks to prevent unauthorised accesses to information,
software and data in order to ensure that three attributes are met, namely:

– the prevention of disclosures that could be used to perform mischievous, malicious or
misguided acts which could lead to an accident or an unsafe situation (confidentiality),

– the prevention of unauthorised modifications (integrity),

– the prevention of unauthorised withholding of information, data or resources that could
compromise the delivery of the required safety function at the time when it is needed
(availability).

All systems important to safety in a licensed nuclear installation, be they conventional or
computer-based, need to be protected from unauthorised access since such access could result
in a system mal-functioning due to either intentional or unintentional interference. The
consequence of such interference could be that an accident might be triggered or the system
might fail to perform its intended protective action. The restriction of physical access through
the use of locked doors and key interlock systems has been the traditional method, and still
remains a major contributor to preventing unauthorised access to systems important to safety.
However, with the introduction of computer based systems important to safety, there are now
a number of security issues that are unique to the technology due to its programmability and
communication facilities, and which need to be addressed.

In addition, there are other computer systems such as maintenance scheduling systems, fuel
burn-up calculators and other computer codes which are used off-line in support of
operational safety, computers used in support of emergency arrangements and dosimetry
record systems, that could indirectly affect plant or individual health and safety, and that must
be considered.

 63SSM 2010:01

1.8.2 Issues Involved

1.8.2.1 So far as is reasonably practicable, there should be no significant increase in overall
plant risk from computer based systems important to safety in a nuclear installation due to:

– intentional or reckless interference or misuse of these systems,

– well intentioned, but misguided, use by authorised persons of these systems,

– the security provisions themselves.

1.8.2.2 Information can be stored in computer central memories or mass storage devices,
can be printed, and can be transmitted by various networks or movable media. This means
that there is the potential for intentional or unintentional impairments and misuses by
company employees or members of the public, authorised or not. Additionally, specific
threats also exist from hackers, viruses, software logic bombs, software time bombs, Trojan
horses, and other similar mechanisms.

1.8.2.3 Interfaces and data exchanges between systems important to safety and off-line
maintenance systems are a security issue to be taken into account. Loading parameter values
or calibration data and periodic testing equipments are examples of the use of such interfaces.

1.8.2.4 Information has to be protected by taking into account the different storage and
communication media which are used, not only at the plant but also at a supplier site.

1.8.3 Common Position

The licensee of a nuclear installation shall adopt, as a minimum the following requirements.

1.8.3.1 General organisation

1.8.3.1.1 For all computer based systems important to safety, as a minimum, the security
provisions shall incorporate the standard security measures that are regarded as good
commercial practice against threats coming from unauthorised access, viruses, software logic
bombs, Trojan horses, and other similar mechanisms.

1.8.3.1.2 The security provisions which address the procedures and the environment of the
design and development of a computer based system important to safety shall be
commensurate with the class of the target system.

1.8.3.1.3 The procedures and equipment for loading software into a system important to
safety shall be included in any security evaluation.

 64 SSM 2010:01

1.8.3.1.4 Where systems important to safety interface to computer-based support systems,
for instance for the updating of calibration data or plant maintenance activities, then, as a
minimum, good security practices shall be observed. Examples of such practices are: user
identification and password protection, the installation of virus protection software (if
relevant), and the standard physical restriction of access to only authorised persons.

1.8.3.1.5 Access shall be restricted (for example through the use of password protection and
key lock systems) to only those parts of a system to which a person has authority.

1.8.3.1.6 A document on security shall be drawn up so as to identify the security risks,
threats and vulnerabilities of the safety system. This document shall be used to derive the
security design requirements of the computer-based safety system.

1.8.3.1.7 In this document allocation of information security responsibilities shall be
defined. In particular, the licensee shall define security requirements that its contractors and
service providers have to satisfy.

1.8.3.1.8 As necessary, security incidents shall be reported to the regulatory authority.

1.8.3.1.9 Special security attention shall be taken during vulnerable phases, for example, on
the occasion of software or hardware changes.

1.8.3.1.10 For safety systems, security specialists in association with the safety specialists
shall evaluate the adequacy of the security provisions.

1.8.3.2 Physical security measures

1.8.3.2.1 For safety systems, security threats shall be avoided by design where possible.

1.8.3.2.2 The safety system software (programs and fixed data, including operational data)
shall be held in suitable fixed read only memory. A systematic comparison of this read only
memory code with the source code shall be performed for the purpose of detecting
unauthorised code.

1.8.3.2.3 No inward data transmission link into the safety system shall be allowed except the
direct connection required by the specified local maintenance and testing equipment. These
systems and other specified support systems shall have restricted access, for example, through
the use of passwords and key locks.

1.8.3.2.4 Direct links from the safety system to equipment outside the plant shall be
prohibited.

 65SSM 2010:01

 66

1.8.4 Recommended Practices

1.8.4.1 All changes of constants and parameters should be automatically recorded in a
secure manner for subsequent auditing.

1.8.4.2 All authorised accesses should be recorded and all security attacks should be
reported (automatically where possible) and investigated.

1.8.4.3 Education on the security policy should be imposed to all persons involved.

1.8.4.4 Constant vigilance is required. The security policy should address the security
issue through appropriate training programmes and specifically targeted campaigns.

 * * *

SSM 2010:01

1.9 Formal Methods

“Saber y saberlo demonstrar es valer dos veces”

Baltasar Gracián

1.9.1 Rationale

“Formal methods” is a general and rather confusing term which is used to refer to various
methods for modelling systems, expressing specifications, programming, analysis, proof,
notations, V&V, and even design and code generation. In this document, the term will be
used to refer to the use of mathematics and logic to describe systems and designs in a way that
makes their mathematical or logical analysis possible. The terms correctness, consistency,
soundness, and completeness are used in this chapter with their classical meaning in
mathematical logic.

In practice such methods offer the possibility of establishing precise and unambiguous
specifications, thus helping in a – sometimes not easy – understanding of specifications. The
availability of such precise descriptions enables analysis, verification, and sometimes proof.
Another effect of these methods is to increase the possibility of more systematically or even
automatically refining the specifications (levels of design), towards executable or high-level
language code. The latter possibility, however, is often confused with the automatic
generation of code (compilation) from high level application oriented programming
languages.

Precise models of system specifications also allow animation. Animations may be used for
checking certain aspects of the requirements and may provide a reference to test the final
software. Mathematical methods may also be used for the validation of system requirements,
as they can be used to show that certain properties are consequences of the specification, i.e.
that programs which satisfy the specification will necessarily have these properties.

As a general remark, it is useful to remember that system design, verification and validation
are human activities which necessarily imply the use of abstract representations and
descriptions. We cannot apprehend reality without the use of mental models. In particular,
dependability can only be discussed and anticipated as an (abstract) property of models of
system structure and behaviour, of its interactions with the environment and of accident
scenarios.

 67SSM 2010:01

1.9.2 Issues Involved

1.9.2.1 Potential benefits of formal methods may include:

– more systematic verification of system specifications for consistency and completeness;

– provision of more rigorous strategies for decomposition and design;

– more systematic refinement of the system specifications towards descriptions from which
source or object code can be generated;

– demonstration of syntactic correctness of software specifications;

– verification of a piece of code using mathematical proof or rigorous analysis techniques to
show that it is a complete and correct translation of its specification;

– validation by using mathematical proof techniques to derive properties from the
specification (e. g. proving that an unsafe state is not reachable);

– evidence that a module with a formally specified and verified behaviour can be
incorporated into a larger software system in such a way that certain properties, e.g.
safety, remain satisfied.

1.9.2.2 A useful introduction to formal methods and their use for the certification of critical
systems can be found in [21].

1.9.2.3 Unfortunately, mathematical analysis has important limitations, which make its use
problematic in practice. Each type of analysis can cover only specific aspects as no theory
currently can combine all the features and properties found in a real system. In addition,
mathematical analysis cannot establish the correctness of a system requirement specification,
nor the intentions behind it.

1.9.2.4 Moreover, when used inappropriately, formal methods may be dangerous as:

– their lack of legibility may lead to difficulties in understanding and verification, especially
for plant specific application software which must be understood by different branches of
engineering,

– no method is universal, and the impossibility of expressing some types of requirements
important to safety (e. g. non functional requirements or aspects of real time behaviour)
may lead to incompleteness or inconsistencies,

– they might be used by insufficiently trained personnel or without support of adequate
tools.

1.9.2.5 In addition, the training effort required by the use of a formal method can be
disproportionate to the benefits that can be expected.

 68 SSM 2010:01

1.9.3 Common Position

1.9.3.1 No credit can be taken in a safety demonstration for the use “per se” of a formal
method without due consideration being given to the specific evidence brought in by this use,
and to its contribution to the safety demonstration of the system.

1.9.3.2 Whatever (combination of) method(s) and notation(s) is used to describe the system
requirements, this description shall be based on a definition of the system boundaries and on a
systematic capturing of the functional and non-functional properties of the system. These
boundaries and properties shall be explicitly and accurately documented (see common
position 2.1.3.2.1).

1.9.3.3 Formal descriptions and mathematical analysis methods shall be carefully selected
with respect to their intended application. The selection shall be justified and documented.

1.9.3.4 There shall be objective evidence of a successful use of the formalisms and
methods used in a related application.

1.9.3.5 The procedures for using the formal methods shall be documented in detail.

1.9.3.6 There shall be a good understanding of any limitations of the formal descriptions
and methods used. For example, any limitation in describing and reasoning about non-
functional requirements, use of resources, or time critical events shall be stated.

1.9.3.7 The formalisms and the methods used for specifying the system requirements shall
be understandable by all technical staff involved.

1.9.3.8 The semantics of a formal description of the system requirements shall be validated
against the results of a prior plant safety analysis, and of other relevant analyses at the plant
level (see common position 2.1.3.1). Animation may be used for this validation.

1.9.3.9 A syntactical verification of the formal descriptions shall be performed.

 69SSM 2010:01

 70

1.9.4 Recommended Practices

1.9.4.1 Criteria for the choice of formal methods

1.9.4.1.1 Training courses and textbooks on the formalisms and methods in use should be
available.

1.9.4.1.2 Tools should enable formal descriptions to be checked for consistency. Tools
should enable the use of animation, so as to aid the checking of completeness.

1.9.4.1.3 The tools associated with the formal method should provide means for producing
the necessary documentation for the project, including the ability to add natural language
comments to the notation to aid understanding.

1.9.4.2 Verification when applying formal methods

1.9.4.2.1 Logical reasoning to justify properties of correctness, consistency and completeness
should support the formal descriptions, and where appropriate mathematical analysis should
be used to verify properties of input, output and dynamic behaviour of the items described.
Checks on formal descriptions comparable to the checks performed by a good compiler on a
program should also be performed when possible.

1.9.4.2.2 Development methods based on application oriented graphical languages generally
offer a means for connecting and configuring a set of predefined components in logic
diagrams. For these methods, the relations between these predefined components in the logic
diagrams should be verified to show that they satisfy a set of syntactical and semantical rules.
For this purpose, simulation and/or animation tools should be incorporated.

1.9.4.2.3 Some development methods supported by a graphical notation, for example those
which incorporate a structured design approach, offer top-down consistency checks between
levels, type checking and automatic code generation. For these methods, additional
verification (e.g. testing, inspections, static analysis) should still be performed in order to
detect semantic faults.

 * * *

SSM 2010:01

1.10 Independent Assessment

1.10.1 Rationale

For a software-based safety system an independent assessment of the system is essential to
provide the degree of confidence in the design process, in the product and in the personnel
involved. The independent assessment ordered by the supplier of the system or by the
licensee can be regarded as an important part of the evidence in the safety demonstration.
Independent assessment can also be an essential activity during modification of the system.

Its purpose is to provide an objective view on the adequacy of the system and its software
which is – as much as possible – independent of both the supplier and the user (licensee).

1.10.2 Issues Involved

1.10.2.1 Ensuring that the independent assessors are independent of project pressures,
which – depending on circumstances – may come from the development team, the supplier or
from the user, in order that assessors are able to comment freely and frankly without being
adversely influenced by these project pressures.

1.10.2.2 Ensuring that independence does not deprive the assessors from access to all
relevant information and from the level of competence and familiarity with the system which
is necessary to make an efficient analysis.

1.10.2.3 Making sure that the findings of the independent assessment are properly addressed
and recorded, and, where changes are proposed, these are handled through the change
management process.

1.10.2.4 Independent assessment may be generic or targeted to a given application. In the
first case it may allow components to be pre-qualified and re-used in applications, the
independent assessment of which may become easier.

 71SSM 2010:01

1.10.3 Common Position

1.10.3.1 The system and its safety demonstration shall be subjected to a documented review
by persons who are:

– Competent;

– Organisationally independent of the supplier(s) of the system (and of its safety
demonstration), and

– Not responsible for – or not involved in – the development, procurement and production
chain of the system.

1.10.3.2 The area and depth of assessment shall be carefully considered and proposed in
each case by the independent assessors, in order to be commensurate with the objective of
confirming (to a high level of confidence) that the delivered/modified system has
achieved/maintained its required dependability.

1.10.3.3 Independent assessment of the product shall be undertaken on the final version of
the software, bearing in mind project time constraints. The independent assessment should
also involve examination of process activities.

1.10.3.4 There shall be adequate provision for the processing and resolution of all safety
questions that may be raised by the independent assessors; their comments on the responses
provided shall be a documented component of their final reporting.

1.10.3.5 The scope, the criteria and mechanisms of the independent assessment activity shall
be the subject of an independent assessment plan. This plan shall be formulated as soon as
possible in the project evolution, so that the necessary servicing of the associated activities
can be properly accommodated and resourced as part of the management of the overall project
programme.

1.10.3.6 The independent assessment shall be agreed upon by all parties involved
(regulator/licensee/supplier), so that the appropriate resources can be made available at the
agreed time.

1.10.3.7 The tools and techniques used by the independent assessor shall, where practicable,
be different from those used in the development process. Where it is necessary to use the
same or similar tools the independent assessor shall recognise this in the independent
assessment plan and propose a different approach to guard against a common failure of both
the independent assessment and the development team to reveal faults within the software.

 72 SSM 2010:01

 73

1.10.3.8 Where the independent assessment reveals that certain functional or non-functional
properties or features of the system have not been adequately ensured or understood, the
independent assessor shall identify and document them for response by the development team.

 * * *

SSM 2010:01

1.11 Graded Requirements for Safety Related Systems
(New and Pre-existing Software)

1.11.1 Rationale

1.11.1.1 Software is increasingly used in many different nuclear applications. Not all of this
software has the same criticality level with respect to safety. Three classes of systems have
been defined and discussed in chapter 1.2: safety systems, safety-related systems and systems
not important to safety.

1.11.1.2 It is recognised that for safety related systems’ software the requirements for
demonstrating an adequate level of safety can be reduced.

1.11.1.3 Simplicity is required for safety systems. Safety related systems can be more
complex. For these latter systems less information may be available on the development
process and on the product. In certain cases, it might be possible to compensate for this lack
of information – typical for pre-existing software of safety related systems – by using
evidence provided by functional testing and adequate operational feedback.

1.11.1.4 For the operational feedback, it is important to determine which data are to be
collected, and how they must be collected and evaluated.

1.11.1.5 The requirements on safety related system software can sometimes be relaxed,
based on the results of a failure mode analysis of the system, or on arguments or conditions of
use which show that the reliability required from the software is low.

1.11.2 Issues Involved

1.11.2.1 The safety classification of a computer based system and of its software is
determined by the importance to safety of the functions it is implementing.

1.11.2.2 The quality of a piece of software can neither be quantified, nor tailored to demand.
Graded requirements are therefore not intended to define concessions and relaxations
allowing lower quality standards of design and development for certain classes of software.
As mentioned in common position 1.2.3.10, they are intended to determine which
development process attributes are adequately required, and the amount of verification and
validation necessary to reach the appropriate level of confidence that the system is fit for
purpose. It is therefore essential to identify and assess the importance to safety of the

 75SSM 2010:01

software as well as any graded requirement scheme intended to be used, as accurately and as
early as possible in a new project.

1.11.2.3 As a general principle, and as already stated in common position 1.2.3.5, a
computer based system important to safety and its software is a safety related system if its
correct behaviour is not essential for the execution of safety functions (see also recommended
practice 1.2.4.6).

1.11.3 Common Position

1.11.3.1 The safety class of a particular computer based system shall be determined
according to the principles of common position 1.2.3.1. Graded requirements as defined in
issue 1.11.2.2 cannot be invoked in the safety demonstration of a computer based system of
any class without a justification for the use and adequacy of these graded requirements.

1.11.3.2 Exceptions to requirements for safety systems can be made for safety related
systems, but must be justified.

1.11.3.3 In order to evaluate the possibility of relaxing certain requirements of the safety
demonstration, as a minimum, the consequences of the potential modes of failures of the
computer based system shall be evaluated. For instance, a failure mode analysis may show
that certain relaxations are possible, when failures of the system can be anticipated and their
effects can be detected and corrected in time by other means.

1.11.3.4 More generally, for safety related systems, the specific requirements of IEC 61226,
2nd ed. section 7 can be taken into consideration. The relaxations to the prescriptions of IEC
60880 and to quality assurance that are allowed by these sections shall be justified.

1.11.3.5 The common position 1.2.3.15 is applicable.

1.11.3.6 All common positions and recommended practices of this document which are
explicitly stated for safety systems are either not enforced, or are enforced and can be relaxed
on safety related systems. These positions and practices are those mentioned in:

Chapter 1.2 on System classes, function categories and graded requirements for software:

– Common position 1.2.3.14

– Recommended practice 1.2.4.3

Chapter 1.4 on Use and validation of pre-existing software:

– Common position 1.4.3.5

 76 SSM 2010:01

Chapter 1.5 on Tools:

– Common positions 1.5.3.1, 1.5.3.3, 1.5.3.5

Chapter 1.6 on organisational requirements:

– Common positions 1.6.3.2.1, 1.6.3.2.2, 1.6.3.2.3

– Recommended practice 1.6.4.3

Chapter 1.8 on Security:

– Common positions 1.8.3.1.6, 1.8.3.1.10 and all common positions in 1.8.3.2

Chapter 2.2 on computer system design:

– Common positions 2.2.3.5, 2.2.3.11

– Recommended practice 2.2.4.2

Chapter 2.4 on coding and programming directives:

– Recommended practices 2.4.3.1, 2.4.3.4.1, 2.4.3.4.3, 2.4.4.3.3

Chapter 2.5 on verification:

– Recommended practice 2.5.3.5.1

Chapter 2.6 on validation:

– Recommended practice 2.6.4.1

Chapter 2.7 on change control and configuration management:

– Common positions 2.7.3.1.2, 2.7.3.3.2, 2.7.3.3.3, 2.7.3.3.6, 2.7.3.4.5

– Recommended practices 2.7.4.1, 2.7.4.2

 77SSM 2010:01

 78

Chapter 2.8 on operational requirements:

– Common positions 2.8.3.3.4, 2.8.3.4.2, 2.8.3.4.3, 2.8.3.5.1

– Recommended practices 2.8.4.2.1, 2.8.4.3

1.11.4 Recommended Practices

1.11.4.1 As mentioned in practice 1.2.4.4, it is recommended that the failure analysis
required in common position 1.11.3.3 is performed on the system specifications, rather than at
code level, and as early as possible in the project so as to reach an agreement between the
licensee and the regulator on graded requirements and/or the requirements for the
demonstration of safety.

Graded requirements for safety related systems

1.11.4.2 Design and V&V requirements addressing factors which affect indirectly the
behaviour of programmed functions may be subject to possible relaxations: e.g. validation of
development tools, QA and V&V specific plans, independence of V&V team, documentation,
and traceability of safety related functions in specifications.

1.11.4.3 Table 2 and Table 3 give an example of classes and graded requirements which
could be used in the demonstration of the safety of computer based safety related systems.
Graded requirements are given for pre-existing software (Table 2) and for newly developed
software (Table 3). In each case safety related system graded requirements are compared to
safety system graded requirements.
It is important to note that these example tables are not meant to provide a complete listing of
safety related system and safety system graded requirements.
Some of the principles on which these tables are founded are expressed in the rationale
paragraph 1.11.1.3. Safety related systems can be more complex than safety systems, and less
information may be available on their development process and on their software. In certain
cases, it might be possible to compensate for this lack of information – typical of pre-existing
software of safety related systems – by provision of evidence resulting from restrictions as to
their conditions of use, an analysis of failures and consequences, functional testing and
adequate operational feedback.

1.11.4.4 The following standards include sets of graded requirements:

– IEC 62138 includes graded requirements for the qualification of software executing
functions of the categories B and C defined in IEC 61226;

– IEC 61508 includes graded requirements for different safety integrity levels.

SSM 2010:01

Table 2: EXAMPLE OF COMPARATIVE CLASSES OF GRADED REQUIREMENTS FOR PRE-EXISTING SOFTWARE
(continued on next page)

 Systems not important to safety Safety related systems Safety systems

Standards
 – Recognised codes and guides – IEC 60880-1986 and IEEE 7-4-3-2

principles, and in particular the
requirements of this column

Quality
assurance

– Professional level – QA plan (generic) covering the whole life
cycle

– Evidence of structured design approach

– Configuration and software maintenance
management after installation

– QA plan (specific to the project)
covering the whole life cycle

– Structured design approach (phases)

– Reviews of ends of phases

– Evidence of experience of staff

– Configuration and software
maintenance management after
installation

Safety
assessment

 – Analysis of impact on safety of the
software component potential failures

– Analysis of risk and consequences of
software CCF; defence and mitigation
countermeasures

– Analysis of impact on safety of the
software component potential failures

– Analysis of risk and consequences of
software CCF; defence and mitigation
countermeasures

Development

– Complete, clear, non-ambiguous
and auditable specifications

– Complete, clear, non-ambiguous and
auditable specifications

– Identifiability of safety related functions
in the specifications

– Autocontrol functions (HW + SW)
specifications

– Design/coding limiting faults

– Validated tools

– Complete, clear, non-ambiguous and
auditable specifications

– Identifiability of safety and safety-
related functions in the specifications

– Traceability of specifications through
the development

– Autocontrol functions (HW + SW)
specifications

– Demonstration of complete coverage by
autocontrol and periodic tests

– Design/coding limiting faults

– Validated tools

 79 SSM 2010:01

Table 2: EXAMPLE OF COMPARATIVE CLASSES OF GRADED REQUIREMENTS FOR PRE-EXISTING SOFTWARE
(continued from previous page)

 Systems not important to safety Safety related systems Safety systems

Verification/
validation

– Supplier’s V&V

– Site commissioning

– V&V plan

– Verification (chapter 2.5) at the end of
development

– Independent validation (chapter 2.6)

– Site commissioning

– V&V plans

– Verification (chapter 2.5) at the end of
each design phase

– Independent V&V (chapter 2.5 and 2.6)

– Independent assessment (chapter 1.9)

– Site commissioning

Documentation
 – Auditable documentation demonstrating

satisfaction of requirements
– Integrated set of auditable documents

Operational
feedback

 – Relevant and documented operational
feedback

– Relevant and documented operational
feedback

 80 SSM 2010:01

Table 3: EXAMPLE OF COMPARATIVE CLASSES OF REQUIREMENTS FOR THE DEVELOPMENT OF NEW SOFTWARE
 (continued on next page)

 Systems not important to safety Safety related systems Safety systems

Standards
 – Recognised codes and guides – IEC 880-1986 and IEEE 7-4-3-2

principles, and in particular the
requirements of this column

Quality
assurance

– Professional level – QA plan (generic) covering the whole
life cycle

– Evidence of structured design approach

– Evidence of experience of staff

– Configuration and software maintenance
management after installation

– QA plan (specific) covering the whole
life cycle

– Structured design approach (phases)

– Reviews of ends of phases

– Evidence of experience of staff

– Configuration and software maintenance
management after installation

Development

– Complete, clear, non-ambiguous
and auditable specifications

– Standard tools

– Complete, clear, non-ambiguous and
auditable specifications

– Identifiability of safety related functions
in the specifications

– FMCA of hardware and software

– Analysis of risk and consequences of
software CCF; defence and mitigation
countermeasures

– Autocontrol functions (HW + SW)
specifications

– Design/coding methods limiting faults

– Validated tools

– Complete, clear, non-ambiguous and
auditable specifications

– Identifiability of safety and safety-related
functions in the specifications

– Traceability of specifications through the
development

– FMCA of hardware and software

– Analysis of risk and consequences of
software CCF; defence and mitigation
countermeasures

– Autocontrol functions (HW + SW)
specifications

– Demonstration of complete coverage by
autocontrol and periodic tests

– Design/coding methods limiting faults
(evidence of programming directives)

– Validated tools

 81 SSM 2010:01

 82

Table 3: EXAMPLE OF COMPARATIVE CLASSES OF GRADED REQUIREMENTS FOR THE DEVELOPMENT OF NEW SOFTWARE
(continued from previous page)

 Systems not important to safety Safety Related Systems Safety Systems

Verification/
validation

– Supplier’s V&V

– Site commissioning

– V&V plan

– Verification (chapter 2.5) at the end of
each development phase

– Independent validation (chapter 2.6)

– Site commissioning

– Specific V&V plan

– Verification (chapter 2.5) at the end of
each design phase

– Independent V&V (chapter 2.5 and 2.6)

– Independent Assessment (chapter 1.9)

– Site Commissioning

Documentation
 – Auditable documentation demonstrating

satisfaction of requirements
– Integrated set of auditable documents

Operational
feedback

 – Relevant and documented operational
feedback for support software, libraries
and other re-used software

– Relevant and documented operational
feedback for support software, libraries
and other re-used software

SSM 2010:01

1.12 Software Design Diversity

“Parempi virsta väärää kuin vaaksa vaaraa.”

Old Finnish proverb

1.12.1 Rationale

In order to achieve high reliability, use is typically made of redundant systems and
components. While identical redundancy is effective in guarding against random hardware
failures, a common cause failure possibility arises from systematic failures, e.g. specification,
design, implementation and maintenance errors etc. Diversity may be introduced to provide
protection against common cause failures. Decisions are required as to the way in which the
required diversity will be achieved. Attention has also to be given to the reliability that can be
claimed following the introduction of diversity and the demonstration required to support
such claims. This chapter focuses on software design diversity issues arising from the use of
computer based systems.

1.12.2 Issues Involved

1.12.2.1 Systems’ Architecture Software Considerations

When designing systems important to safety to provide plant functions such as control and
shut down protection, important decisions have to be made as to what is an acceptable
systems’ architecture. This section addresses systems’ architecture issues that are likely to
influence the need for and nature of software design diversity.

One approach typically adopted during architecture design, to protect against the possibility
of common cause failure, is to consider the use of multiple, possibly diverse, systems. Also
consideration of the need for defence in depth such that a failure in one layer is compensated
for in the overall systems’ architecture may lead to the need for diverse, possibly software
based, systems.

The number of systems, components or channels required, the degree of diversity between
them, the apportionment of reliability targets and the selection of the technology for each of
them have to be addressed. One approach that may be adopted for one-out-of two systems

 83SSM 2010:01

where one of them is a computer based system is to employ a simple non-computer based
secondary system. Where multiple computer based systems, channels or components are
employed, the issue of software diversity has to be considered and this is discussed further
below.

The computer system architecture design should ensure that the required independence (e.g.
conceptual, implementational and physical etc.) is maintained between systems, components
or channels. Note that a discussion, common positions and recommendations on computer
system architecture including use of segregation and isolation etc. can be found in chapter 2.2
on computer system design. It is at the systems’ architecture level that functions are assigned
to the diverse systems, components or channels and the use of functional diversity at this level
is an example of the diversity seeking decisions discussed below.

The design of the systems’ architecture should employ the technique of defence in depth (e.g.
to ensure overlapping defences such that a failure in one system is mitigated elsewhere). An
example of this defence in depth would be a protection system providing protective action in
case of a control system failure. In this example software might be used in both the control
and protection systems; and the potential for common cause failures due to the software
would require analysis. More generally the potential for common cause software failures
across all defence barriers utilising computer based systems should be analysed.

Decisions taken as to the devices used at the plant level (e.g. sensors and actuators) will also
require careful consideration since modern instrumentation is increasingly utilising software
components (e.g. smart sensors and actuators). For example, the use of the same smart
sensor/actuator type across diverse systems (e.g. primary and secondary protection systems
and; control and protection systems) will introduce an element of common software, the
implications of which should be fully analysed.

1.12.2.2 Software diversity

Software diversity can be introduced to overcome the problem of coincident software failures
in redundant parts of a computer based system. Software diversity is introduced by different
means, N version techniques being the most common. Since such computer based systems
tend to be complex, arguments of simplicity and correctness typically used to support
hardware or procedural diversity may not be applicable. N version techniques typically
involve the independent creation of programs for the diverse computer based systems. Those
building the programs typically work independently of each other with no direct
communication. The teams can either be given complete freedom on the production methods
or methods can be imposed (forced diversity). The expectation is that the faults introduced by
the teams will be diverse and coincident failures across the computer based systems will be
reduced. Unfortunately there is no precise way of determining the benefit that such diversity

 84 SSM 2010:01

delivers. There are many different sources of potential coincident software failures and
research in this field shows that statistical independence cannot always be assumed, see
references [16], [18], [22]. Then, positive correlation of failures cannot be ruled out and this
will lead to worse reliability than suggested by assumptions of statistical independence (e.g.
simple multiplication of each of the reliabilities for a one out of two systems’ architecture).
As a result safety case arguments as to the reliability achieved by the use of software diversity
are required.

1.12.2.3 Software Reliability Figure

For a discussion on the reliability figure to be used following introduction of software
diversity, see chapter 1.13 on software reliability.

1.12.2.4 Diversity Design Options and Seeking Decisions

Options must be taken as to what are the most effective methods and techniques to ensure
diversity of failure behaviour across diverse software programs. These choices are termed
diversity seeking decisions. Current practice is founded on engineering judgment, which
identifies what are considered to be the best means to force diversity with some limited
support from research. The possibility of providing further scientific support to these
judgments is an open research issue. The guidance provided in this document is, therefore,
predominately based on engineering judgment. Examples of methods to force diversity
include specification of different functions, use of different development environments, tools,
languages, design and coding methods, algorithms and V&V methods etc. The intent is to
present the development teams with different specifications, requirement methods and
techniques such that coincident failures are unlikely. Another important but potentially
limiting factor is the need to ensure the software has the greatest simplicity compatible with
the design intent.

Amongst the various methods to force diversity the use of functional diversity is generally
accepted as a particularly important measure (e.g. [1]; and [12], §13.4.1 which specifically
recommends functional diversity implementation unless it is impossible or inappropriate; also
see e.g. [22]). Functional diversity typically involves the use of different parameters in each
system responsible to achieve the same safety objective (e.g. response to a plant event
requiring reactor trip is based on temperature measurement in one system and pressure in the
other). The best means of implementing functional diversity has to be considered and this
might include ensuring that at least one system utilises a simple function (e.g. temperature
level trip) where the other(s) employ functions involving non trivial calculations. Functional
diversity may also be used within a computer based system (i.e. across different channels or

 85SSM 2010:01

components utilising common hardware) but the means of implementing functional diversity
and benefit that this approach delivers will need to be carefully considered (e.g. while the
application software might be different the impact of identical components such as operating
system software will have to be addressed).

1.12.2.5 Common Cause Failure Analysis

While diversity design options intend to utilise diverse software components, confidence is
required that this objective has been satisfied. A common cause failure analysis of the diverse
software components and their development arrangements should be performed to provide the
required confidence. This analysis should address the potential for and implications of the use
of common modules, algorithms and code across (and within multi-channel) systems. Further
guidance on common cause failure analysis can be found in [12].

1.12.3 Common Positions

1.12.3.1 The decision by the licensee to use diversity, the type of diversity or the decision
not to use diversity shall be justified.

1.12.3.2 The plant and the computer system architecture shall ensure that the necessary
independence is maintained between the systems, components or channels for which diversity
is claimed

1.12.3.3 Functional diversity shall be used whenever possible in the implementation of
systems, components or channels intended to be diverse.

1.12.3.4 The design of computer based systems utilising software diversity shall be justified
against current best practice which includes but is not limited to:

– functional diversity,

– independent development teams with no direct communication,

– simplicity of software design and implementation,

– different description/programming languages and notations,

– different development methods,

– different development platforms, tools and compilers,

– different hardware,

– diverse verification and validation.

 86 SSM 2010:01

1.12.3.5 The safety demonstration provided for diverse computer based systems,
components or channels shall include an analysis of any potential common mode failures.
This demonstration shall include consideration of the best practice noted above. A specific
justification shall be given as to the impact on reliability and potential for common cause
failure arising from any commonalities (e.g. identical software components, compilers, V&V
methods etc.). For each major component of executable target software, the justification shall
pay special attention to the risks of potential common causes of failure specifically presented
by this component, and show with adequate and specific analysis and evidence that these risks
are acceptable.

1.12.3.6 The systems and software architecture design shall have the minimum complexity
commensurate with the design requirements.

1.12.3.7 When functional diversity is required, the diverse software based systems shall be
associated with the same class.

1.12.3.8 When functional diversity is required by deterministic arguments of the safety
demonstration, the software of the diverse systems shall be subjected to the same graded
requirements.

1.12.3.9 The design of application software – which is usually new software being
developed – shall be structured so as to preserve the functional diversity designed at plant
level.

1.12.4 Recommended Practices

1.12.4.1 Where diverse safety systems are required, and one is computer based,
consideration should be given to implementing the second one using a simple non-computer
based system.

1.12.4.2 The reliability target assigned to any combination of computer based systems (e.g.
one out of two protection configuration), components or channels, should be demonstrably
conservative having given full consideration to the factors that could lead to coincident
failures.

1.12.4.3 Where a claim is made that very high reliability has been achieved through
software diversity then it must be shown that dissimilar means have been employed in all
aspects of the development lifecycle. Any divergence from this should cause the claim to be
down rated.

 87SSM 2010:01

 88

1.12.4.4 Since research is active in this area, the position should be reviewed to ensure best
use is made of emerging scientifically based advice, in particular, to determine claim limits on
diverse computer based systems, components or channels produced by means of software
diversity techniques.

1.12.4.5 The application software processing the input data of a same safety function in
redundant trains can be implemented by code with adequate protections against coincident
failures, e.g. with variations in names, in memory locations, in execution sequences or by
other software diversity methods (see section 1.12.2.2 in this chapter).

 * * *

SSM 2010:01

1.13 Software Reliability

1.13.1 Rationale

1.13.1.1 Traditional deterministic approaches for safety demonstration are supported by the
use of system classification discussed elsewhere in this document. This approach typically
requires the highest international standards to be applied to safety systems. However, use of
probabilistic techniques (e.g. PSA and QRA) may lead to reliability targets (expressed as
probabilities of failure) being set for I&C systems important to safety. This chapter is only
applicable where such targets have been set for the computer based systems. Within this
chapter references to reliability or probability of failure refer to software unless stated
otherwise. It should also be recognised that software reliability is only one issue of
dependability.

1.13.1.2 Consideration has to be given to (i) what is the best reliability that can be claimed
for the software of computer based systems, and (ii) use of graded requirements to support
different reliability levels. It is widely recognised that there is no way of precisely measuring
the actual reliability of a computer based system. Reliability estimates are usually obtained
by expert judgment based on operational experience and/or best engineering practices.

1.13.2 Issues Involved

1.13.2.1 Quantitative and Qualitative Assessment

Qualitative assessment involves using engineering/expert judgement to determine the
reliability that can be claimed following application of defined software engineering
requirements. Quantitative assessment uses techniques that provide a numerical estimate of
the reliability of the developed software (e.g. software statistical testing). The use of
qualitative or quantitative approaches alone or some combination of the two needs to be
determined.

The determination of acceptable sets of graded requirements including justification of
appropriate techniques and measures to support different reliability levels is a key issue
requiring resolution. For instance the IEC 61508 standard [14] addresses this issue through
the use of four safety integrity levels (SILs) with recommendations on software techniques
and measures applicable for each SIL (the higher the SIL the more onerous the
techniques/measures). For example, techniques and measures that have to be considered for
satisfaction of the detailed software design and development requirements include formal

 89SSM 2010:01

methods, defensive programming and modular approaches (IEC 61508-3:1998). It should be
noted that current approaches are dominated by qualitative requirements. However, the use of
Software Statistical Testing (SST) techniques offers the possibility of a quantitative
demonstration (see below).

1.13.2.2 Claim Limitation

Claims of ultra-high software reliability cannot be demonstrated with current techniques [18].
Therefore, a decision has to be made as to the limit that can be claimed for a computer based
system. A review of nuclear sector standards [13] and [8] shows that claims of lower than
10-4 probability of failure on demand for a computer based system are required to be treated
with caution. There are additional problems in determining claim limits when multiple
computer based systems are associated with the same plant initiating event fault (e.g. multiple
protection systems) arising from, for example, common cause failures and these issues are
discussed further below and in chapter 1.12 on diversity.

1.13.2.3 Multiple Safety/Safety Related Functions

Where a computer based system implements multiple safety and/or safety related functions it
is possible that different reliability targets are assigned to the different functions. This might
suggest that different approaches could be taken to the design of the software implementing
these functions. Such a claim would require a demonstration of independence between the
functions (i.e. to demonstrate that a worse reliability target function could not prevent the
correct operation of a better reliability target function). Without such a demonstration the
best individual function reliability target (and hence the more onerous requirements) should
be applied to all of the software.

1.13.2.4 Balance safety system versus safety related system

The deterministic approach generally allows no relaxation of requirements within a class but
does across classes. Hence higher standards are usually required for a safety system than a
safety related system. Using relaxations based on assigned reliability targets alone might lead
to the situation where the safety system requirements are less onerous than those for safety
related systems (e.g. as a result of requiring better reliability for a safety related control
system than a protection system) and such situations should be viewed with caution.
Computer based safety related systems such as control systems tend to be more complex than
protection systems (usually implementing simple shutdown algorithms) and as a result it is
recognised as good practice to keep reliability targets for such control systems modest.

 90 SSM 2010:01

1.13.2.5 Software Statistical Testing

The use of software statistical testing (SST) provides the potential to derive an estimate of
demonstrated system reliability. There are two main models used to estimate reliability, one
of which uses classical [3] and the other Bayesian statistics [19]. For example, using the
classical approach we can determine the number of required tests (representative operational
transients randomly selected from the input space) to support a reliability claim at a desired
confidence level (e.g. of the order of 50,000 tests with no failure for a 10-4 pfd demonstration
to 99% confidence). Similar test figures can be derived using the Bayesian approach. For
SST to be valid it has to be shown that a number of assumptions hold, which are typically: 1)
tests reflect the actual operating conditions of the software, 2) the tests are independent, 3)
any occurring failure would be detected by the oracle, and no failures of the SST method and
tools are actually detected during the SST. Research into SST is an open area with progress
being made into code coverage related techniques and component based approaches to
facilitate reuse. As a result those intending to use SST should carry out a review of SST
research to ensure that the steps needed to generate a convincing statistical reliability
demonstration are fully understood.

Generation of the test data for SST may be both difficult and time consuming. As noted
above the amount of test data required for higher reliability demonstrations is not
insignificant. Additionally the time to undertake the test runs and analyse the results has to be
factored into the project timescales. It is important that the test runs are truly representative of
the plant operational behaviour under the anticipated fault conditions (e.g. plant parameter
data such as temperature and pressure vary in the way expected during demands for plant
protection). This might require the use of plant fault simulation software (which will also
require validation) to generate representative test data. However, given the representative
nature of the tests to actual plant behaviour the use of SST provides an important reliability
demonstration.

The role that SST plays in the overall safety demonstration has to be considered, for example,
whether to employ as part of the software design and implementation verification or as a
confidence check during commissioning. In addition the use of reliability growth models may
be considered since they might also provide useful guidance on the reliability.

 91SSM 2010:01

1.13.2.6 Determination of Reliability Values when Software Diversity is Employed

A reliability claim intended to be supported by the use software diversity has to be justified.
For example, where two diverse computer based systems in a one out of two protection
configuration have been introduced to provide defence against plant faults the probability of
failure for the combination is often taken to be the product of the two system reliabilities. This
is, however, a particular case of statistical independence; the actual value could fall between
that of the more reliable system and zero (both systems never fail on the same demand), see
e.g. [16], [17], [18].

Thus, the use of software diversity (see chapter 1.12) presents particular challenges when
attempting to determine the probability of failure of diverse systems. Attention, therefore,
should focus on those conditions that support claims of statistical independence for software
versions. At present there is no precise method to guarantee the achievement of statistical
independence: demonstrations are based on qualitative arguments of best engineering practice
(e.g. such as use of diversity seeking decisions) supported by examination of bounding cases
and use of conservatism.

1.13.2.7 Assignment of Reliability Targets when Software Diversity is Employed

The assignment of reliability targets to systems employing software diversity shall be
appropriate given the need to ensure software of the highest possible quality (i.e. up to the
defined common cause failure limitation) is used in each system to reduce the chance of
residual errors. In particular, claims of high reliability involving multiple low reliability
computer based systems shall not be allowed (e.g. usage of four 10-1 pfd systems as opposed
to a single 10-4 pfd system).

1.13.3 Common Positions – Applicable when reliability targets are used

1.13.3.1 Reliability claims for a single software based system important to safety of lower
than 10-4 probability of failure (on demand or dangerous failure per year) shall be treated with
extreme caution.

1.13.3.2 The safety plan shall identify how achievement of the reliability targets will be
demonstrated.

1.13.3.3 The sensitivity of the plant risk to variation of the reliability targets shall be
assessed.

 92 SSM 2010:01

1.13.3.4 Software of the highest possible quality (i.e. up to the defined common cause
failure limitation) shall be used in each system employing software diversity. Claims of high
reliability involving multiple low reliability as opposed to a single high reliability computer
based systems shall not be allowed.

1.13.3.5 The reliability expected from each executable software component (operating
system, library, application software, intelligent drivers, sensing and actuation devices,
communication protocols, etc.), shall be defined and shown to satisfy these targets. See
common position 2.3.3.1.8.

1.13.4 Recommended Practices

1.13.4.1 If the software is required to meet a reliability target, schemes using graded
requirements assigned to reliability levels should be used during the development and
assessment processes. An example of such a scheme would be four reliability levels (e.g.
level 4 – 10-4, 3 – 10-3, 2 – 10-2, 1 – 10-1) with best use made of existing standards such as [14]
and [8] to determine the graded requirements applicable at each level. Another approach is the
assignment of a probability of failure figure to the class relaxations shown elsewhere in this
document.

1.13.4.2 The reliability target assigned to systems of higher safety importance should
normally be better (i.e. lower probability of failure) than that assigned to systems of lower
safety importance.

1.13.4.3 The demonstration requirements applicable to the function with the best reliability
target (i.e. lowest probability of failure) of all of the functions implemented within a single
computer based system should be taken to apply to all of the software unless a demonstration
of independence between the functions and their implementations is provided.

1.13.4.4 Reliability claims for complex computer based systems such as control systems
should be kept low so as to ease the safety demonstration process. The necessary risk
reduction should be provided elsewhere (e.g. within low complexity protection systems).

1.13.4.5 Where practicable, SST techniques should be used to support the safety
demonstration. Consideration should also be given to the use of other reliability models (e.g.
reliability growth) that provide a quantification of the expected reliability.

1.13.4.6 In the case of a replacement or upgrade, the software may be required to have a
reliability target that is at least as good as that of the system being replaced. Under
appropriate conditions – in particular adequate hardware redundancy – it may be acceptable to
compare levels of common mode failure probabilities, i.e. to require a level of common mode

 93SSM 2010:01

 94

failure probability for the computer based system that is equivalent to or less than the level for
the hardware being replaced.

 * * *

SSM 2010:01

1.14 Use of Operating Experience

Über die Antwort des Kandidaten Jobses

Geschah allgemeines Schütteln des Kopfes.
Der Inspektor sprach zuerst hem! hem!
Drauf die anderen secundum ordinem.

Wilhelm Busch, “Bilder zur Jobsiade”,

Wiedensahl (Hanover), 1872

1.14.1 Rationale

1.14.1.1 This chapter addresses requirements for collection and use of operating experience
data. By “operating experience”, we mean a collection of information on how a piece of
software has been performing in service.

1.14.1.2 Data on operating experience may be collected in different contexts and for
different purposes. Data may be collected on systems, components, and tools of different
safety classes.

1.14.1.3 Chapter 1.4 “Use and Validation of Pre-existing Software (PSW)” and chapter 1.11
“Graded Requirements for Safety Related Systems (New and Pre-existing Software)”
consider, among other factors, the contribution of operating experience to the validation of
pre-existing software. This chapter deals with the operating experience in a more general
context in order to determine how it can contribute to software dependability.

1.14.1.4 The monitoring and recording of operational experience data may serve different
useful purposes, in particular:

– following the classical engineering and scientific approach, to take advantage of the past
experience to improve the understanding of systems and of their failure modes, which is
necessary to exercise expert and engineering judgment,

– to ensure, for example, through periodic safety reviews, that the safety case remains valid,

– to improve system design and their methods of construction, verification and validation,

– to obtain information on the stability and the maturity of software,

 95SSM 2010:01

– to support quantitative claims of dependability (reliability, availability) based on statistical
data,

– to provide qualitative confidence in the dependability – or in some specific safety
properties – of similar designs under similar profiles of usage,

– to provide insight, after installation and operation, into the appropriateness of the software
qualification process,

– to provide a contribution to the qualification of software development and validation tools.

1.14.2 Issues Involved

1.14.2.1 Operational experience alone does not give enough evidence for the justification of
the safety of a safety system or even a safety related system. On the other hand a system that
has been used for a long time faultlessly in several installations may offer in practice, with
proper documentation and under certain conditions, substantial supporting evidence of its
dependability.

1.14.2.2 Traditionally, I&C operating experience is recorded and evaluated only if
disturbances and failures occur. However, information about the I&C system’s correct
performance during various plant operating modes may provide additional operational
experience data.

1.14.2.3 There are many diverse industrial applications of digital I&C systems. Thus,
various operating experience data may be available from non-safety applications. Regarding
safety applications, however, special qualification requirements have to be met. The
fulfilment of these requirements is difficult to demonstrate and in general, no credit can be
taken from the operational experience of non-safety applications unless very stringent
conditions are met.

1.14.2.4 The acceptability and usability of operating experience data is dependent on several
factors, in particular:

1.14.2.4.1 Software configuration management
Configuration management allows effective assessment of whether the product’s operating
experience is valid in the presence of changes, such as additions to functionality or correction
of faults. Uncontrolled changes to the executable code may invalidate the use of operating
experience.

 96 SSM 2010:01

1.14.2.4.2 Effectiveness and relevance of problem reporting
In-service problems should be reported together with information about the experienced
operating and environmental conditions, and problems observed should be recorded in a way
which allows identification of the affected items within the products configuration
management system.

1.14.2.4.3 Relevance of the product service operating profile and environment
An analysis should show that the software will perform the same function in the proposed
new application as it performed during previous applications. Aspects to compare might be
the parameter input and output ranges, data rates as well as performance and accuracy
requirements. For instance, operating experience is not applicable to software functions that
were not exercised in the previous applications.

1.14.2.4.4 Impact of maintenance and changes
Maintenance activities contribute to operating experience. As a main aspect of the root cause
analysis after a distinct event, the possible impact of earlier maintenance activities like
periodical testing under special test conditions or software upgrading have to be analysed. The
issue is to properly identify the contribution resulting from:

– incorrect design or execution of maintenance activities, or

– incorrect design of the I&C system.

1.14.2.5 The objectives of operational experience data collection cannot be satisfied unless
the involved parties accept the required resource commitments and confidentiality
agreements. Licensees may not be required to communicate to the regulator data associated to
events that are not related to safety. The issue of concern is that the potential impact on safety
of an event may vary from one application to the other.

1.14.2.6 With regard to tool certification, the relevance of operating experience is also
dependent on the above-mentioned issues, in particular on adequate configuration
management, stability and maturity of the tool.

1.14.3 Common Position

1.14.3.1 Events causing detected faults, revealed errors and failures that may affect safety
shall be analysed by the licensee and reported to the regulator. In particular, the potential for
common cause failure, the relevance to other software based systems important to safety and
the impact and the necessary improvements and corrective actions to the design, to the
software development and the V&V and qualification processes shall be assessed.

1.14.3.2 Operating experience data shall be collected by the licensee in a systematic manner,
for instance by means of a computerised database. For safety related events the data record

 97SSM 2010:01

shall comprise at a minimum the general data to identify the event (contextual and historical
information) and as much data as possible to reproduce the event. The documentation of the
design process for the system [8] provides a reference for the data to be collected from
operational experience.

1.14.3.3 Arguments shall be presented to confirm that no safety significant faults have been
omitted by the data collection exercise.

1.14.3.4 Whenever credit is to be sought from operating experience in a safety case, the
objectives and criteria for collecting operating experience data shall be identified and shown
to be adequate in relation to the safety properties for which credit is sought.

1.14.3.5 Credit can be sought from the operating experience of previous hardware/software
installations provided that the following conditions are satisfied:

1.14.3.5.1 The credit is considered as being of no other nature than that which would be
sought from factory or site integrated tests; and not, in particular, as evidence for quality of
design or for proper functionality.

1.14.3.5.2 The value of the credit as an acceptance or complementing factor is judged against
the criteria stated in IEC 60880 Ed. 2 (2006) [12];

1.14.3.5.3 The operating experience data are demonstrably relevant, i.e. they are shown to
satisfy the conditions of relevance of common positions 1.14.3.4, 1.14.3.6 and 1.14.3.7;

1.14.3.5.4 The set of implemented functions and the input profiles (input parameters, data
ranges and rates) of the system/component under consideration are demonstrably the same as
those of the installations on which data are collected;

1.14.3.5.5 When only parts of a software package for which operating experience credit is
sought are used, analysis of the collected data shall show their validity for the intended
application and the unused parts of the software must be shown to have no impact on safety.

1.14.3.6 Relevant operating experience data shall at least include:

– meaningful information on the statistics, the severity and the actions taken to correct or
mitigate all detected faults, errors and failures,

– information on system and software configuration and version, on system operational
conditions and on application environment profiles; this information must be shown to be
consistent with the configuration, version, conditions and profile of the I&C system under
consideration.

If it is relevant, the above information shall be given separately for the distinct operating
modes of the system in relation to the different operating modes of the plant, e.g. full power,
shutdown.

 98 SSM 2010:01

 99

1.14.3.7 When evaluating the relevance of operating experience, the impact of configuration
management and maintenance activities shall be taken into account (see in particular
paragraph 1.14.2.4.4 above and common position 2.7.3.3 addressing software maintenance, ie
software changes after installation).

1.14.3.8 Operating experience data on a system/component that are obtained from other
relevant installations of that system/component must be maintained, updated and made
available to the licensee and to the regulator.

1.14.4 Recommended practices

1.14.4.1 For different systems designed and qualified on a unique common platform, the
operating experience may be coherently evaluated by the vendor to increase the knowledge
about their performance according to the common platform requirements. The extent to
which the operating experience can be applied more widely should be determined through
comparison of the operating profiles of the various systems. The analysis should determine
how the platform functions have been exercised by each operating profile.

1.14.4.2 The analysis of a distinct event (see clause 1.14.2.4.4) needs to assess whether the
main design principles and qualification requirements were met during the course of the
event. In this evaluation, the vendor should identify and analyse the main design principles
and qualification requirements item by item. The evaluation result should make clear whether
the event was caused by a system internal fault or by external influences like manual actions,
e.g. as part of maintenance, calibration or testing activities.

1.14.4.3 If the intention is to use the operating experience for reliability analysis, special
data like the time of occurrence, elapsed time for repair and maintenance, processor and data
communication load, etc. should be collected.

1.14.4.4 The system supplier should have an organisation in place to allow users to
exchange information on their respective operating experience and be kept informed of the
system/component evolution.

 * * *

SSM 2010:01

1.15 Smart Sensors and Actuators

1.15.1 Rationale

1.15.1.1 Conventional sensors/actuators are becoming unavailable and are being replaced by
smart sensors/actuators. Smart sensors/actuators contain microprocessors and the use of
firmware and software in these microprocessors presents challenges to the nuclear industry,
particularly when they are used in safety systems.

1.15.1.2 Smart sensors/actuators support sensing and/or control functions and provide
computation and communication facilities. Smart sensors/actuators typically have the
following hardware: a microcontroller for computation, a small RAM for dynamic data, one
or more flash memories that hold the program code and long-lived data, an analogue-digital
converter, one or more sensors, a communication interface and a power source.

1.15.1.3 An advantage of these smart sensors/actuators is the modular fashion in which they
can be connected to central processing units. As one might expect, many products and
variants are available. For example, some smart sensors/actuators contain digital signal
processor chips while others support wireless communication.

1.15.1.4 Most smart sensors/actuators have a minimal operating system that handles
interrupts and performs simple task scheduling; sometimes features such as priority
scheduling, logging to files on flash or emulating virtual memory are added. The application
software layer, using these basic capabilities, implements the application specific
functionality, which of course varies considerably.

1.15.1.5 As far as licensing is concerned, the software of smart sensors/actuators presents
many aspects similar to those discussed in chapters 1.4 and 1.11 for pre-existing software
(PSW). Thus, several issues, common positions and recommended practices discussed in
these chapters apply to the use of smart sensors/actuators.

 101SSM 2010:01

1.15.2 Issues Involved

1.15.2.1 In addition to the issues discussed in section 1.4.2, the following more specific
problematic aspects need to be addressed.

1.15.2.2 The demonstration that smart sensors/actuators are fit for use in a nuclear safety
application is not straightforward. High reliability of smart sensors/actuators can only be
demonstrated by means of an independent assessment with full access to the design
documentation. A user of a smart sensor/actuator, however, would not usually have access to
the design documentation. The supplier would not normally allow other parties to review its
design documentation and as a result it is not usually produced for that purpose.

1.15.2.3 Access to design documentation presents the main challenge to nuclear
operators/licensees. In practice, this access is hindered by several factors such as:

– need to protect the suppliers intellectual property rights;

– the potential revelation of anomalies in the suppliers’ processes and products

– time and effort required from the manufacturer;

– the argument that previous certification (if available) should suffice;

– the relatively small size of the nuclear market which typically means that nuclear licensees
have limited influence on smart sensor/actuator suppliers.

1.15.2.4 Smart sensor/actuator suppliers produce their products to a quality that they regard
as appropriate but this cannot take into account the requirements of specific use such as those
of nuclear plant applications. Since the supplier does not know the context of use, the supplier
cannot show that the instrument reliability is sufficient for the intended application.

1.15.2.5 There is currently no nuclear sector standard specifying the design documentation
for smart sensors/actuators, nor even the issues that should be addressed. However, some
smart sensor/actuator suppliers claim compliance to the IEC 61508 standard [14] but there
remains no generic mechanism to satisfy those users who require independent evidence to
support a functional claim of high reliability.

1.15.2.6 Assessments will be performed on a specific version of a smart sensor/actuator and
the validity of the assessment may be challenged if the supplier changes its product (e.g. the
software version). As a result a process will need to be in place to ensure that the installed
smart sensors/actuators are the same versions as those subjected to assessment. In addition a
supplier might upgrade a product from a conventional device to a smart device without the
end user being aware of this change. Again a process will need to be in place to ensure such
changes are detected and the smart sensor/actuator subjected to assessment.

 102 SSM 2010:01

1.15.2.7 The use of smart sensors/actuators often implies a drive to distributed intelligence.
It is often thought that this move will increase reliability. This is however not necessarily the
case. The use of distributed intelligence replaces one central data acquisition system and
simple field sensors with sensors integrating complete acquisition and communication
systems in less benign and possibly aggressive environments, hence potentially reducing the
reliability of the whole system.

1.15.2.8 When multiple copies of an instrument are used across the plant, the potential for
common cause failure both within and across systems is another risk that must be addressed.

1.15.2.9 Engineering competence is another hurdle to the successful implementation of
distributed systems. Conventional 4-20mA systems are well understood, easily tested and
adequately addressed by current technician skills. Digital signalling requires new skills and
understanding, for example, leaving aside the topic of wireless communications, consider the
problem of demonstrating that the software has high integrity when Fieldbus communications
are employed. Fieldbus contains most levels of the Open Systems Interconnection basic
reference model architecture and the volume and complexity of its software is large (e.g. one
smart sensor that has been analysed by the nuclear industry was found to contain 16k lines of
code for the implementation of the sensor functionality and another 100k lines of code for the
implementation of the Fieldbus communications).

1.15.2.10 As a consequence of all these issues, a pragmatic assessment approach is needed
which accounts for scenarios where design information is lacking by making use of
compensating evidence (addressing for instance specific operational conditions, failure modes
and past operating experience) coupled with specific independent (i.e. from the smart
sensor/actuator supplier) confidence building activities.

1.15.2.11 The approach needs to be compatible with nuclear safety standards and current
research, and needs to be graded by importance to safety.

1.15.3 Common Position

Functionality and Categorisation

1.15.3.1 The make, model, version and application of the smart sensor/actuator subjected to
assessment shall be clearly identified and it shall be confirmed that the type testing applies (ie
that the smart sensor/actuator subject to previous tests was fully representative of the smart
sensor/actuator being assessed). The licensee shall ensure that the installed smart
sensors/actuators are the same versions as those subjected to assessment.

1.15.3.2 The licensee’s procurement arrangements shall ensure that technology changes
from conventional sensor/actuator to smart sensor/actuator are recognised.

 103SSM 2010:01

1.15.3.3 The licensee shall demonstrate that the smart sensor/actuator has the functional and
performance properties appropriate for the intended application.

1.15.3.4 The licensee shall define the safety class of the smart sensor/actuator. The class
shall be determined in accordance with chapter 1.2 and will be the same as the class of the
system in which the smart sensor/actuator is embedded unless justified otherwise.

1.15.3.5 The smart sensor/actuator dependability (safety, reliability, availability) properties
necessary to satisfy the plant application requirements shall be identified and documented by
the licensee. This documented identification is essential for two reasons: (i) in its absence, one
would not know what the safety properties to be justified are; and (ii) the identification helps
to circumscribe the evidence which is needed.

Failure Analysis

1.15.3.6 The potential failure modes of the smart sensors/actuators shall be identified. Their
consequences on the safety of the plant shall be identified and shown to be acceptable (see
1.1.3.3). Special attention shall be paid to the interface between smart sensors/actuators and
other components to which they are connected and to the possible side-effects that may occur
at these interfaces.

1.15.3.7 When multiple use of smart sensors/actuators is employed (e.g. in redundant
configurations), the risk of common cause failure is of special concern and shall be analysed.
Note that failures due to software are not random and that replacing redundant hardware
devices by redundant embedded software systems does not necessarily provide the reliability
of the original design.

Dependability Assessment and Qualification

1.15.3.8 The smart sensor/actuator’s production process shall be compared to that of an
appropriate safety standard. The applicability of the safety standard shall be justified. Any
gaps revealed by the comparison exercise shall be addressed by compensating activities
and/or arguments (see also 1.4.3.8.4). If any of the safety standard clauses are not used then
the omissions shall be evaluated and justified.

1.15.3.9 The licensee shall undertake a programme of independent (i.e. from the smart
sensor/actuator supplier) confidence building activities appropriate to the safety class (which
might include activities such as commissioning tests, static analysis, statistical testing and
analysis of operating experience). The requirement for confidence building measures and their
extent may require agreement between the licensee and regulator.

1.15.3.10 For safety systems, the smart sensors/actuators software implementation of the
dependability requirements mentioned in common position 1.15.3.5 above shall be subjected
by the licensee to the same assessment (analysis, review and testing) of the final product (not

 104 SSM 2010:01

of the production process) as new software developed for the application. If necessary,
reverse engineering shall be performed. Should this assessment not be feasible in whole or in
part, complementary and compensating valid evidence shall be sought in compliance with
common position 1.15.3.11 below.

1.15.3.11 The compensating activities and/or arguments (e.g. additional tests and independent
verification and validation) required to compensate for the gaps identified by the comparison
activity (see common position 1.15.3.8 above) shall be determined and justified by the
licensee in relation to the:

– specific nature of the missing evidence;

– dependability properties identified under common position 1.15.3.5; and

– potential failure modes of the smart sensor/actuator identified under common position
1.15.3.6.

1.15.3.12 The compensating activities and/or arguments shall be shown to be adequate to
address specific evidence deficiencies and to bring the specific credit needed to support the
dependability properties. Sufficient evidence shall be available to justify:

– the quality of the production process (quality and verification and validation plans,
pedigree and experience of designers and supplier, etc);

– the quality of the product (test and verification coverage, etc);

– the acceptability of the smart sensor/actuator in the light of its operational experience as
witnessed by product returns and failure notices etc. (documentation, etc);

– that specific risks (e.g. common cause failure, unused existing software, flooding
(overloading), etc) are not a concern.

1.15.3.13 When the software of the candidate smart sensor/actuator is qualified for its
intended use, the safe envelope and limits within which it is acceptable to use the candidate
smart sensor/actuator shall be identified and documented. Limits can include requirements on
procedures for installation, periodic inspections, maintenance, training of staff, or
assumptions on the environment and system in which the smart sensor/actuator is used, etc.

1.15.3.14 The assessments required here above shall be undertaken for each smart
sensor/actuator based on the make, model, version, configuration and intended application
(see also 1.4.3.2). Reliance should not be based on a generic assessment unless this can be
shown to be adequate for the specific application. Evidence from a previous qualification or a
generic pre-qualification shall be given careful consideration as to the limits of its
applicability to the current application.

 105SSM 2010:01

Documentation and Other Requirements

1.15.3.15 The licensee shall ensure that access to all information required to support the
safety case is available to those with a need to have such access (e.g. licensee, regulator and
authorised technical support organisations). This information shall be sufficient to assess the
smart sensor/actuator to the required level of quality. For high integrity applications this
could include access to source code (see also 1.4.3.7 and 1.15.4.1).

1.15.3.16 For smart sensors/actuators embedded in safety systems, the licensee shall have full
access to information on the software production process (see 1.15.4.1 for those cases where
this access is limited).

1.15.3.17 Common positions 1.4.3.4, 1.4.3.6, 1.4.3.8.1, 1.4.3.8.2, 1.4.3.8.3, 1.4.3.8.5,
1.4.3.8.6, 1.4.3.9, 1.4.3.10 shall apply without change to smart sensors/actuators.

1.15.3.18 More generally, the following common positions apply:

Chapter 1.1 on safety demonstration:

– Common positions 1.1.3.1 to 1.1.3.7 (note that references to “system” in these common
positions should be interpreted as meaning “smart sensor/actuator”)

Chapter 1.10 on independent assessment:

– Common positions 1.10.3.1 to 1.10.3.8

Chapter 1.11 on graded requirements for safety-related systems (new and pre-existing
software):

– Common position 1.11.3.3

Chapter 1.12 on software design diversity:

– Common positions 1.12.3.1 to 1.12.3.9

Chapter 1.14 on use of operating experience:

– Common positions 1.14.3.1 to 1.14.3.8.

 106 SSM 2010:01

1.15.4 Recommended Practices

1.15.4.1 The recommended practices of chapter 1.4 apply.

1.15.4.2 Recommended practices 1.15.4.3 to 1.15.4.5 are only applicable where reliability
targets have been set for the computer based systems2.

1.15.4.3 Common position 1.15.3.8 above requires access by the licensee to the production
process of the smart sensor/actuator. If reliability targets are used, different levels of access
to the source code can be catered for using a pragmatic graded approach dependent on the
required reliability. If the required reliability for the software in a safety system or safety
related system is proven to be sufficiently low, ie where the probability of failure on demand
is greater (ie less onerous) than 10-2, access to the source code may not be required.

1.15.4.4 If reliability targets are used and a probability of failure on demand of 10-2 is
required, access to and analysis of the source code and circuit information is expected.
However, this may not always be possible and typically, three options are available, presented
here in order of preference:

a access to source code obtained:

◦ assess in accordance with the common positions shown above,

◦ apply static and dynamic analysis to the firmware.

b access to source code not obtained:

◦ present evidence to show attempts to access data have been unsuccessful and that there
are no dumb or alternative justified smart sensor/actuators are available,

◦ assess in accordance with the common positions shown above,

◦ perform statistical testing.

c diverse instruments used (and access to source code not obtained), each of which meet the
requirements for systems with a probability of failure on demand greater (ie less onerous)
than 10-2:

◦ assess each smart sensor/actuator as previously described, providing compensating
evidence where gaps are identified,

◦ provide explicit arguments of diversity,

◦ audit the manufacturers to support the diversity arguments.

2 These recommended practices are not applicable in Germany.

 107SSM 2010:01

 108

1.15.4.5 If reliability targets are used and a probability of failure on demand of 10-3 is
required, all common positions, including analysis of the source code and circuit information,
shall be rigorously applied.

 * * *

SSM 2010:01

PART 2: LIFE CYCLE PHASE LICENSING
ISSUES

2.1 Computer Based System Requirements

Även en liten tuva kan stjälpa ett stort lass

(Old Swedish proverb)

2.1.1 Rationale

The computer based system requirements (for short called hereafter system requirements)
should be implementation independent. They should deal with the computer based system as
a black box. The elicitation of these requirements is a critical step in the design. They are the
result of co-operative work between experts of different disciplines and, as such, are prone to
ambiguities, misunderstandings, inconsistencies and defects. Experience shows that these
defects may have an important impact on all subsequent stages of the design, and can be
difficult to correct at later stages.

2.1.2 Issues Involved

The system requirements and their documentation must be understandable to all parties
involved, including those in charge of writing the computer system hardware and software
specifications, the suppliers, and those involved in verification, validation and licensing
activities. At the same time the description must be unambiguous and accurate, and this
implies a certain degree of formalism. A compromise which preserves safety must be made
between these two requirements which are in conflict. [20]

 109SSM 2010:01

2.1.3 Common Position

2.1.3.1 The system requirements shall be validated, i.e. their soundness, consistency and
completeness shall be established in relation to the results of a prior plant safety analysis, and
other relevant analyses at the plant level.

2.1.3.2 The system requirements documentation shall at least cover the following items:

2.1.3.2.1 A precise definition of the system boundaries, that is of the system interface to the
plant and of its man machine interface. It shall in particular include the documentation of the
restrictions and constraints placed on the system by compatibility requirements with other
existing systems in the plant, by physical and natural environment constraints, by protection
against propagation of non-safety system failures.

2.1.3.2.2 A specification of system requirements, i.e. of the functions and of the non-
functional properties – dependability, security, performance (e.g. accuracy, cycle and
response times) – required from the system.

2.1.3.2.3 A precise definition of the input variables to be monitored by the system (process
variables, operator signals) and of the output variables to be controlled (output to actuators
and indicators), together with a specification of the ranges of these variables. Requirements
on how to validate the input variables values before they are actually used by the software
shall be specified. Where feasible, the rate of change of a variable shall be checked against
agreed maxima and minima.

2.1.3.2.4 The specification of special engineered features where there is a need to change
specific system parameters such as calibration constants for operational reasons.

2.1.3.2.5 The results of the validation required in 2.1.3.1.

2.1.3.2.6 The results of a failure analysis performed on the above requirements. In
particular, it shall be specified how the system must react to failures of its interface with the
plant such as sensor failures and input variables being out of range. Potential incorrect system
outputs shall be identified, their impact on the plant and environment evaluated, and the
presence of adequate safety defences confirmed.

2.1.3.2.7 The documentation of the system requirements and of their demonstration of
correctness, completeness and consistency (requirement validation), shall be made available
to the regulator as early as possible in the project.

2.1.3.3 The system should include the means for verifying that the final control elements
have achieved the desired state in the required time.

 110 SSM 2010:01

 111

2.1.4 Recommended Practices

2.1.4.1 When practical, the system requirements specifications should be animated or
simulated.

2.1.4.2 The specifications of the system validation tests should be derived from the system
requirements.

 * * *

SSM 2010:01

2.2 Computer System Design

2.2.1 Rationale

The means by which the computer system architecture is demonstrated to be adequately safe
and to meet the computer based system requirements (functional and non-functional) must be
addressed at this stage.

The methodical and systematic derivation of the design requirement specifications for this
architecture is important for the safety demonstration. It is not a trivial task, and it must be
addressed carefully and properly. To a large extent, the design process is an empirical and
heuristic process based on past experience gained in previous designs. New designs are often
driven by technological considerations (use of a new, more efficient or more reliable
technology) or by commercial objectives (better configurability, easier maintenance).

For an adequate safety demonstration, the computer system architecture that is proposed
should be traceably derived from the system requirements with documented arguments for the
choices being made.

Executable software components can be of different types: operating system, library,
application software, intelligent drivers, sensing and actuation devices, communication
protocols, man-machine interfaces, etc. These components do not contribute in the same way
to the dependability of the whole system. Defence in depth principles should be applied to the
design of these different components: a component (for example the application software) can
be designed so as to mitigate potential unsafe failures of the components it is using.

2.2.2 Issues Involved

2.2.2.1 The computer system architecture design has to be shown to result from a
consideration of alternatives and from a mapping (systematic, structural or formal) of the
system requirements onto the selected solution for:

– Hardware or ASIC’s (application specific integrated circuits),

– Purchased software,

– Software to be developed,

– Software to be produced by configuring pre-developed software.

 113SSM 2010:01

2.2.2.2 At this stage, the specification documents may also need to incorporate additional
requirements relating to:

– Equipment qualification (EQ); electromagnetic interference (EMI) and radio-frequency
interference (RFI) immunity,

– Communication systems, multiplexers, network protocols,

– Fault detection and auto-supervision,

– HW/SW fault tolerance mechanisms,

– Testability, In service testing and maintenance, auto-testing

– Systems outside the computer based system boundaries which require design decisions
(e.g. instrumentation requiring software compensation or filtering),

– Human interfaces,

– Security.

2.2.3 Common Position

2.2.3.1 The computer system architecture, with its centralised versus distributed
organisation, and its allocation of functions to either hardware or software shall be
demonstrated to result from the system requirements and from the added requirements
mentioned above in issue 2.2.2.2.

2.2.3.2 The principles of redundancy, diversity, physical isolation, segregation, and
separation between safety functions, safety related functions and functions not important to
safety shall be applied to the design of the computer system architecture. The contribution
made by each principle to meeting the requirements – including design criteria such as the
single failure criterion – shall be documented. In particular, the non-functional requirements,
including reliability, shall be explicitly addressed.

2.2.3.3 The boundaries between components associated with different safety classes shall
be well defined. Failure propagation across the boundaries from a component of lesser
criticality to a component of higher criticality shall be prevented.

2.2.3.4 The design shall achieve the required accuracy and response times to satisfy the
system accuracy and real-time performance requirements. In particular, attention shall be
paid to the cycle times, signal sampling and processing functions that will be implemented.

2.2.3.5 The design shall ensure that failure of a part of a redundant safety system shall not
adversely affect other redundant or common parts of this safety system.

 114 SSM 2010:01

2.2.3.6 The hardware shall be designed so that all hardware faults which may affect safety
or reliability can be detected, by auto testing or by periodic testing, and are notified. In the
presence of faults, the system must move to a subset of states which can be demonstrated to
satisfy the system safety requirements. This shall be true even in the presence of an external
fault like a loss of electrical power to the system or to its input/output devices.

2.2.3.7 A computer system architecture failure and hazard analysis shall demonstrate that
the possible failure modes of the architecture that may compromise the safety functions have
been taken into account, and that adequate exception handling mechanisms and hazard
mitigating functions have been included in the design.

2.2.3.8 It shall be ensured that the use of these fault tolerant, exception handling and
hazard mitigating mechanisms is appropriate and that they do not introduce unnecessary
complexity.

2.2.3.9 The computer system architecture shall be designed so that it is periodically
testable in service without degradation of reliability. Test periodicities shall be derived from
the system reliability and availability requirements. Hardware faults shall be postulated, even
those that will remain undetected; these faults shall be taken into account in the consideration
of the required hardware redundancy and tests periodicities.

2.2.3.10 The computer system architecture shall be designed so that validation is made as
easy as possible.

2.2.3.11 For safety systems, the common position 2.7.3.3.2 is applicable.

2.2.3.12 The evidence identified in the above clauses shall be documented and made
available to the licensor as early as possible in the project.

 115SSM 2010:01

 116

2.2.4 Recommended Practices

2.2.4.1 Fault Tolerance and Recovery

All fault tolerant architectural mechanisms should be justified against the following
principles:

2.2.4.1.1 Fault tolerance is the capability to mitigate the effect of errors, so as to prevent
them from turning into failures that jeopardise system safety. It requires detection, control and
decision mechanisms, and interconnections. The efficiency of fault tolerant mechanisms
depends on the knowledge of the faults to be protected against. Also, it works best when
reliable components of design are employed, when the error rate is already low, and the fault
mechanisms well identified. In addition it must be recognised that a fault tolerant mechanism
can become a source of failures in its own right. These potential failures should be identified,
and their impact on the fault tolerance capabilities should be assessed.

2.2.4.1.2 Fault avoidance through the use of highly reliable design elements is therefore a
prerequisite of fault tolerance. If a fault can be identified and avoided, it should be designed
out first before fault tolerant mechanisms are considered. Thus, fault tolerance should not be
used to compensate for deficiencies in the design. It should be used only if the deficiencies
are well understood, unavoidable and specific of a fault type.

2.2.4.2 It is recommended that software-based safety systems should not be designed with
the flexibility to cover a wide range of non-protection duties through the use of customising
data. With this proviso, sufficient features should be included in the architecture to enable a
reasonable degree of flexibility in the software design and implementation of the requirements
to be achieved.

2.2.4.3 The use of features not specified by the manufacturer, for example undeclared
instructions or clock rates, should be prohibited unless their use is fully justified.

 * * *

SSM 2010:01

2.3 Software Design and Structure

2.3.1 Rationale

The software production process consists of three stages, namely: software requirements
definition, software design, and implementation (i.e. the production of code).

The software requirements are the subset of the system and computer system architecture
requirements (chapter 2.1) that will be implemented as computer programs. It is important
that all requirements are carried completely and correctly into software and hardware
requirements. It must be possible for people who did not produce the requirements (reviewers
and regulators) to trace the origin of the software requirements and verify them.

The software used in a computer based system can be from different origins (see e.g.
reference [9]):

– New Software: software with complete documentation written specifically for the
application,

– Existing accessible software: typically software from a similar application that is to be
reused and for which documentation is available;

– Existing proprietary software: typically a commercial product or software from another
application that meets all or some of the current application requirements but for which
little documentation only is available;

– Configurable software: typically software that already exists but is configured for the
specific application using data or an application specific input language.

These different types of software are essentially produced by two distinct processes: the
classical development process through refinement stages of specifications and design, or
development by means of code generating tools which receive as input a high level language
application oriented description of the system requirements. The choice between these two
approaches depends on the tools and resources available, and must, in particular, take into
account trade-offs between design and demonstration of tool dependability (see chapter 1.5).
However, in all cases, programming in a given computer language, and the use of tools
always take place to some extent.

 117

2.3.2 Issues Involved

2.3.2.1 Ideally, software requirements should be written so that they can be understood and
used by many different categories of people: software designers, computer system engineers,
regulators and, sometimes, process engineers and safety engineers. They should be written in
a form that is independent of the particular implementation, and which essentially aids
understanding of how the requirements are derived from the system and safety requirements.
[20]

2.3.2.2 Software design is the division of the software into a set of interacting modules,
and the description of those modules and of their interfaces. It is important to design so that
the result is well structured and understandable to the implementers, maintainers, testers, and
regulators. The design should demonstrably cover all software requirements and should not
contain any unnecessary item.

2.3.2.3 The demonstration that the code is a correct implementation of the software
specifications is also a major issue.

2.3.2.4 Despite all best endeavours to produce fault free software through good design
practices and thorough testing, there is always the potential for unforeseen error conditions to
arise. Therefore the technique of incorporating error checking (which may be based on
formal assertions) into software is regarded as a sound policy. This technique is known as
defensive programming. It should cover both internally and externally arising exceptions,
without adding unnecessary complexity to the software.

2.3.2.5 The code usually cannot be produced correctly at once in a single version.
Therefore, change requests and modifications have to be carefully controlled.

2.3.2.6 A software change is more likely to be conceived and implemented correctly if the
system’s software is well structured, modular, well documented and containing features which
aid changes. However, it has to be recognised that a system that has been designed to be
easily maintainable may, in fact, require an overly complex design whose safety may be
difficult to demonstrate to the regulator (in this context, see also recommended practice
2.2.4.2).

 118

2.3.3 Common Position

2.3.3.1 Software Functional and Non-Functional Requirements

2.3.3.1.1 The software requirements shall be traceable to the system requirements, both
functional and non-functional. In particular, the system requirements may contain reliability,
availability and security requirements, and these requirements shall be carried forward into
the software requirements. The documentation shall be carefully designed, clear and precise;
and shall be understandable by the appropriate groups of people who may have different
competencies.

2.3.3.1.2 The software requirements document shall define the interfaces between the
software and the following: the operator, the instrumentation (sensors and actuators), the
computer hardware and other systems with which communication links exist.

2.3.3.1.3 If requirement relaxations (graded requirements) are allowed for the qualification
of certain specific types of software, these relaxations must be justified and precisely defined
in the safety plan, at the start of the project.

2.3.3.1.4 The software requirements shall address the results of the computer system failure
and hazard analysis (see common position 2.2.3.7). The software requirements shall include
the necessary supervision features to detect and report hardware failures. They shall also
include the necessary supervision features for the software. In accordance with common
position 2.8.3.1.2, the adequacy of automatic self supervision in combination with periodic
testing during operation shall be demonstrated.

2.3.3.1.5 Defensive programming techniques shall be employed where known states and
parameter ranges occur. For example, where the state of a valve can be either open or closed,
a check shall be made that, after a finite change-over time, one state or the other is achieved.
This should be done by checking open AND not closed, or closed AND not open. In the case
of parameter ranges, if the output of a computation returns an unrealistic answer then an error
should be flagged.

2.3.3.1.6 The software shall be designed so that, where practicable, the correct operation of
the plant actuator selection and addressing system is verified. The design shall also include
means for verifying that the final actuated equipment has achieved the desired state in the
required time.

2.3.3.1.7 The computer system shall employ a hardware watchdog of demonstrably
adequate reliability. This watchdog shall be serviced by a program operating at the base level
of priority so as to detect problems such as programs locked in loops or deadlocked.

 119

2.3.3.1.8 If reliability targets are set for the computer based system, then the common
positions and recommended practices of chapter 1.13 on reliability are applicable. The level
of reliability required from the software shall be explicitly stated, with the understanding that
the achievement of a software reliability level is less demonstrable than other requirements.

2.3.3.2 Software Design

2.3.3.2.1 The software shall be organised on a modular basis in a manner which minimises
the risk of design faults and also facilitates independent verification. The use of hierarchical
modularisation, encapsulation and information hiding is recommended such that the design of
a module is restricted to one clearly identified function that requires only minimum
interaction with other functions and minimises the impact of changes. The interfaces between
the various modules shall be simple, completely identified and documented.

2.3.3.2.2 The separation between safety functions, safety related functions and functions not
important to safety, which is defined by the computer based system requirements, shall be
maintained in the software design and its achievement demonstrated.

2.3.3.2.3 Documented evidence shall be given that the supervision features mentioned in
common position 2.3.3.1.4 maintain the system in a safe state.

2.3.3.2.4 The design shall be constrained in ways which make the execution of the software
verifiable and predictable.

2.3.3.2.5 The design of application software shall be designed so as to be testable as
possible, for instance by minimising state memorisation between system execution cycles and
by maximising independence between software input-output paths (see common positions
2.4.3.3.1, 2.4.3.3.2).

2.3.3.3 Software Implementation

2.3.3.3.1 Coding and programming techniques shall comply with the contents of chapter
2.4.

2.3.3.3.2 The programming languages that are used shall have a rigorously defined syntax
and semantics or they shall be demonstrably restricted to a safe language subset.

2.3.3.3.3 The code shall be verifiable against the software requirements. If verification is
planned to include human inspections, the code shall be readable, adequately commented, and
understandable.

 120

2.3.3.3.4 The code of each part of a module shall be displayed in a specific section of the
module documentation together with the textual information necessary to verify the
correctness of this module part to its requirements.

2.3.3.3.5 The code shall be written in a style and with language features and program
constructs that make it as easy as possible to test, in particular by reducing the number of
dynamic test cases required (see common positions 2.4.3.3.1, 2.4.3.3.2).

2.3.4 Recommended Practices

2.3.4.1 Functional and non-Functional Software Requirements

2.3.4.1.1 The software requirement specifications should be based on a functional model of
the system to be implemented, as for example, a finite state machine model or an input/output
relation model (see, for example [10]).

2.3.4.1.2 For better traceability and verifiability, the naming and encoding of data structures,
input, output and internal variables should be meaningful in the system environment (for
example, names as set point, temperature, trip, should be used). Names should be used
consistently throughout the whole software.

2.3.4.1.3 For each relevant software output, a safe state should be indicated that can be used
in case of a detectable but not correctable error.

2.3.4.1.4 Assertions aiding fault detection should be inserted into the code, and the system
should be made as fault tolerant as possible. For example, data errors occurring in inputs and
on transfer between modules should be trapped and alarmed; instrument readings should
indicate when they are off scale.

2.3.4.2 Software Design

2.3.4.2.1 Module interfaces should be simple, and such that the consequences of expected
changes should be confined to a single or to a small number of modules.

2.3.4.2.2 Modules should be defined in a way which makes it possible to reason about and
test a module part (program) in isolation from other module parts and from other modules.
The contextual information which is required for these activities should be part of the module
documentation.

2.3.4.2.3 The interface between the system software and the application software should be
completely defined and documented.

 121

 122

2.3.4.3 Software Implementation

2.3.4.3.1 For application software, it is strongly recommended that a problem-oriented
language rather than machine-oriented language be used.

2.3.4.3.2 If a requirement specification language is used, it should have a well defined
syntax and semantics.

 * * *

2.4 Coding and Programming Directives

2.4.1 Rationale

Software coding is the phase which follows the design phase. It is the process – using a
programming language – of transforming the software specification into a set of instructions
executable by computer.

Well structured programs employing good programming practices will, in the main, be more
dependable than those that do not follow these practices, in particular, when coding is
performed manually. A careful selection of the language features and program constructs that
are used also makes the software easier to test.

Coding and programming directives seek to ensure that good programming practices are used,
that the formats of the code and of its documentation are consistent throughout the system and
that they are well structured and understandable.

2.4.2 Issues Involved

2.4.2.1 The instruction sets of digital computers allow, through the use of branch
instructions (including computed branches), index registers (used as address pointers) and
indirect addressing, extreme complexity to be introduced into the code (both through poor
structuring or the addition of unnecessary functionality). This complexity in coding can result
in the introduction of faults during the coding phase and when making software changes. It
also makes the detection, during the verification and validation phases, of any fault introduced
more difficult.

2.4.2.2 To address these problems, strict coding rules need to be defined and enforced.
These coding rules should impose a stringent discipline on the writing of the safety system
software and ensure that code legibility is given priority over ease of writing.

2.4.3 Common Position

2.4.3.1 The detailed recommendations given in appendix B of IEC 60880 for the coding of
software shall be followed. For the implementation of safety system software, all exceptions
to these recommendations shall be duly justified. However, the recommendations contained
in this section 2.4.3 shall be followed under all circumstances.

 123

2.4.3.2 A document containing the coding directives that are enforced on the programmers
shall be produced before the start of the coding phase. This document shall be available to the
licensor.

2.4.3.3 Coding

2.4.3.3.1 The code shall be designed so as to facilitate static analysis, testing and
readability.

2.4.3.3.2 In particular, the code shall – as much as possible – run in a direct and fixed
sequence pattern, i.e.:

– Computed branching shall be prohibited. Branching into loops, modules or subroutines
shall be prohibited.

– Dynamic instruction changes shall be prohibited.

– Interrupts shall be avoided unless they lead to a significant simplification. Where
interrupts are used, their usage and masking during time and data critical operations shall
be proven correct and shall be well documented. The use of high-level synchronisation
programming primitives shall preferably be used to deal with interrupts. The hardware
and software shall be designed so that every interrupt is either serviced or explicitly
masked.

– Recursion – not amenable to static analysis – and re-entrancy shall be avoided unless they
are shown to produce simpler code than by other means.

– Nesting of loops shall be limited to a specified maximum depth for safety system
software, and modification of loop control variables within the loops shall be prohibited.

– All alternatives in switch or case statements shall be explicitly covered by the code.
Appropriate actions shall be implemented to deal with default conditions.

– Indirect addressing shall be used carefully so that computed addresses shall be easy to
identify.

2.4.3.3.3 Dynamic storage allocation shall be prohibited.

2.4.3.3.4 Module size shall not exceed a limit specified for the system without justification.

2.4.3.3.5 Unnecessary code compacting, programming tricks and unnecessary optimisations
which make the understanding of code more difficult shall be avoided.

2.4.3.3.6 Operations involving different types of variables shall be avoided unless
conversions appear explicitly.

 124

2.4.3.4 Subroutines

2.4.3.4.1 For safety system software, a maximum shall be specified for the depth of nested
subroutines.

2.4.3.4.2 Subroutines shall communicate with their environment exclusively via their
parameters.

2.4.3.4.3 For safety system software, subroutines shall have only one entry point and shall
return from only one point.

2.4.3.5 Data structures and addressing

2.4.3.5.1 Variables and data shall be explicitly declared and assigned. Explicit initialisation
of all variables shall be made before their first use. A variable shall not be used for more than
one purpose.

2.4.3.5.2 Distinctly different symbolic names shall be used to represent constants, variables,
modules, procedures and parameters.

2.4.3.5.3 Equivalence statements, especially referring to a common or global area shall be
prohibited.

2.4.3.5.4 Arrays shall have a fixed, pre-defined length. The number of dimensions in every
array reference shall be equal to the number of dimensions in its corresponding declaration.
Dynamic computation of indexes shall be prohibited.

2.4.3.5.5 Arithmetic expressions shall reflect the equations they represent. They shall be
executed in binary fixed-point arithmetic, unless the use of floating-point arithmetic can be
demonstrated to contribute to safety – in the latter case, the hardware and software used to
implement floating point functions shall be suitably qualified.

2.4.3.6 Defensive Programming

2.4.3.6.1 If complicated calculations are necessary, the program shall be written so that –
where feasible – a simple function or assertion will provide an error check and back-up
action.

2.4.3.6.2 Defensive programming shall be applied by programmers with the objective of
maintaining program behaviour within its specifications:

– known states and program properties, and parameter ranges shall be verified;

– variable values likely to cause illicit operations shall be detected, (for example, division
by 0).

 125

2.4.3.6.3 Dynamic checking for overflow and underflow shall be performed, e.g. for array
bounds, lists, queues, buffers.

2.4.3.6.4 The compatibility between the precision used to represent numerical values shall
be guaranteed and if necessary verified dynamically.

2.4.3.6.5 Taking into consideration 2.3.3.1.5, 2.3.3.1.6, 2.3.4.1.3 and 2.3.4.1.4, library
modules shall benefit from an adequate level of defensive programming at the application
level, in particular with respect to the “within range” validation of their input parameter
values, the detection of anomalies and the generation of safe outputs.

2.4.3.6.6 The design of application software – which is usually new software being
developed – shall be shown to be defensive, taking into consideration 2.3.3.1.5, 2.3.3.1.6,
2.3.4.1.3 and 2.3.4.1.4; in particular, it will be shown to properly react to the potential failure
modes which were identified for the software it makes use of: the operating system, the
drivers, the controllers.

2.4.3.7 Language and compiler requirements

2.4.3.7.1 The programming language used to write the code shall – when feasible – be
restricted to a safe subset. A high level, strongly typed, programming language that prohibits
the unsafe mixing of variable types is preferred. Run time type checking shall be used when
available.

2.4.3.7.2 Assembly language shall be kept to a minimum and subject to the same strict
coding principles and controls as for a high level language.

2.4.3.7.3 The compiler of the programming language used to write the software shall be
validated, and its error detection capabilities shall be clearly defined.

2.4.3.7.4 The same version of the compiler shall be used for all parts of the software. All
software shall be re-tested if a new version of the compiler has to be used, unless it can be
demonstrated that the machine code has not changed.

2.4.3.7.5 Any compiler code optimisation shall be simple and provably correct. The same
optimisation options shall be used on all the software. Array bound checking shall be
included.

 126

2.4.3.8 Operating Systems

2.4.3.8.1 The behaviour of the operating system shall be predictable (see also common
position 2.3.3.2.4), for example by ensuring that:

– the task structure is simple;

– the task generation should take place statically in a linear sequence in the initialising
phase (no dynamic task creation and deletion);

– the task priorities are statically assigned;

– no dynamic memory allocation is used;

– the system includes self diagnosis features;

– use of interrupts is restricted to cases that result in design simplification;

– the absence of stack overflow is demonstrated.

2.4.3.9 Support Software and Tools

2.4.3.9.1 All support software and tools used in the production and testing of code
(compilers, assemblers, linkers, loaders, operating systems, configuration control systems,
static analysers, test harnesses, coverage analysers, etc.) shall be qualified or otherwise
suitably justified, and shown to comply with the requirements of this consensus report.

2.4.3.10 Documentation

2.4.3.10.1 The source code shall include commentaries to a level of detail that is consistent
throughout the whole software. Commentaries shall be consistent with the documentation of
the software requirements and of the design. They shall be a sufficient complement to this
documentation to make the code readable and understandable.

2.4.3.10.2 In particular, commentaries, related to the code of every software module or
program, shall contain all the complementary information necessary for an independent and
stand alone review and verification of this code against its specification.

2.4.3.10.3 Commentaries shall also include any specific information required for
maintenance of the code, in particular, its history and the designers’ names.

2.4.3.10.4 If a tool has generated the code, the common positions in this section 2.4.3.10
apply to the language description of the tool input.

 127

 128

2.4.4 Recommended Practices

2.4.4.1 Coding

2.4.4.1.1 The coding phase should start only after the verification team has approved the
design phase.

2.4.4.1.2 Evidence should be provided that structured programming techniques have been
followed.

2.4.4.1.3 Backward branching and branching out of loops should be avoided, except in the
case of error exit.

2.4.4.2 Data structures and addressing

2.4.4.2.1 The use of global variables within subroutines should be avoided.

2.4.4.2.2 The symbolic names and types of variables, constants, modules, procedures and
parameters should be meaningful at the application level.

2.4.4.3 Language and compiler requirements

2.4.4.3.1 Assembler and machine code insertions into high level language code should not
be allowed without justification.

2.4.4.3.2 Automatic generation of source code by validated tools is preferable to manual
writing. If a generation tool is used, it shall comply with the recommendations of chapter 1.5.

2.4.4.3.3 The compiler should have been previously and widely used in comparable
applications, and should comply with the recommendations of chapter 1.5. For safety system
software, the use of compiled code optimisation options should be avoided.

 * * *

2.5 Verification

2.5.1 Rationale

In order to obtain sufficient evidence that the software implementation complies with the
functional and non-functional requirements, appropriate verification procedures have to be
established and implemented at well-defined milestones in the course of the software life
cycle process.

Most of the commonly used software development life-cycle models include a verification
step after each software development phase to ensure that all requirements of the previous
development phase have been implemented completely, consistently and correctly.

There is a wide spectrum of verification methods from which ideally an optimal and well
balanced subset has to be selected.

Some of the main methods currently used for software verification are

– Reviews, walks-through, audits: Manual or tool supported measures, particularly used to
verify the phases of requirement specification and design specification;

– Static analysis: Source code verification, mainly with respect to design and coding
standards, symbolic execution and data-flow;

– Testing: Verification of the executed object code with respect to software correctness
(note: In the framework of validation, tests will be performed on target hardware and
under target environmental conditions). The IEC 60880 standard [12] lists the most
common software testing methods. (see e.g. also [21]).

2.5.2 Issues Involved

2.5.2.1 Demonstration of software correctness and of its contribution to reliability

2.5.2.1.1 As already stated in chapter 2.2, executable software components can be of
different types: operating system, library, application software, intelligent drivers, sensing and
actuation devices, communication protocols, man-machine interfaces, etc. These components
do not contribute in the same way to the dependability of the whole system. Specific
evidence and methods of validation and verification are necessary to show that these
components comply with the dependability requirements of the system.

 129

2.5.2.1.2 Software behaviour can be highly sensitive to “small” programming, coding or
even typing errors. Further, the functionality of software based systems is usually more
complex than that of their analogue counterparts. Therefore it is difficult to estimate how and
to what extent the software may affect the overall system reliability.

2.5.2.1.3 Although validation is an important final step to obtain evidence of the software
correctness, experience shows that it must be complemented by the results of well-defined
verification prior to the final validation.

2.5.2.1.4 A formal proof of correctness is sometimes possible for certain requirements that
can be modelled and analysed by formal and mathematical techniques. In practice, this will
not be possible for the overall software system which may include an operating system,
communication protocols, etc.

2.5.2.1.5 The digital nature of a computer based system prevents advantage being taken of
extrapolation and interpolation during the determination of the types and number of tests
needed to demonstrate compliance with the requirements. This limitation obliges the verifier
to carefully justify the amount of testing performed in relation to the required system
reliability.

2.5.2.2 There is a wide spectrum of verification methods and tools. A selected set of these
must be planned and shown to be appropriate to the lifecycle phase to which they are to be
applied, and to the safety claims that are to be made.

2.5.2.3 Recent experience shows that the verification of safety critical software may be
costly in time and resources. A verification plan therefore has to be carefully established
early in a project in order to gain the maximum safety benefit from the expenditure of this
time and resources.

2.5.2.4 A detailed understanding of the relationship between verification results and
software requirements is necessary in order to obtain evidence that the software fulfils its
requirements and demonstrate the absence of undesired functionality and behaviour.

2.5.2.5 Confidence in verification results depends also on organisational measures;
therefore those in charge of the verification are required to have the necessary qualifications,
independence and knowledge of the system.

2.5.2.6 Some further issues such as the verification of pre-existing software and use of
formal methods and tools are separately discussed in chapters 1.4, 1.5 and 1.9.

 130

2.5.3 Common Position

2.5.3.1 Selection of Verification Methods and Tools

2.5.3.1.1 At the end of each phase of the life cycle (requirements, design, coding, hardware-
software integration), the output of the phase shall be verified against its input specifications.

2.5.3.1.2 The scope and depth of analysis and verification that is planned for the end of each
phase shall be determined and justified in terms of the evidence it is intended to contribute to
the demonstration of safety. This justification shall be documented, and made accessible to
the regulator.

2.5.3.1.3 For each major component of target executable software (operating system,
library, application software, intelligent drivers, sensing and actuation devices,
communication protocols, etc.), as far as reasonably practicable, the absence of potentially
unsafe remaining defects that can cause the loss of a safety function of the system shall be
demonstrated.

2.5.3.1.4 In addition, different verification methods shall be combined in order to achieve a
sufficient coverage of the functional and the non-functional requirements. The coverage
achieved by this combination shall be determined and justified. This justification will be
accessible to the regulator.

2.5.3.1.5 Every software module shall be verified by executing the code to a degree of
coverage which complies with the common position 2.5.3.3.

2.5.3.1.6 The verification of the system integration shall include testing by executing the
code.

2.5.3.2 Verification Planning

2.5.3.2.1 A verification plan which specifies the verification steps, their schedule, the
procedures, the persons in charge, the contents of the verification reports, and the follow-up
for detected faults and anomalies will be established and made accessible to the regulator
early in the project.

2.5.3.2.2 The verification plan shall cover in detail all distinct software development phases
as well as the different levels of system integration and software architecture (module,
program, and subroutine).

2.5.3.2.3 The verification plan shall address the criteria, strategy and equipment that are
necessary for each verification step. Furthermore the verification plan shall clearly define the
intended test coverage.

 131

2.5.3.3 Coverage

2.5.3.3.1 The range of values and all the discontinuity and boundary neighbourhoods of
every input variable shall be tested. Attention shall be paid to the use of equivalence
partitioning.

2.5.3.3.2 All modes of system operations shall be considered during the design of test cases.

2.5.3.3.3 Each distinct test at system or module level shall monitor all outputs of the system
or module.

2.5.3.3.4 All interfaces (between modules, and between programs), and all communication
protocols shall be tested.

2.5.3.3.5 Fault tolerant and exception mechanisms (e.g. divided by zero, out of range values,
overflows) shall be tested. If this is unfeasible, evidence of their correct behaviour shall be
provided by other means.

2.5.3.3.6 Test specifications shall ensure that all lines of code, and – at system integration –
all module calls are exercised, and coverage analysis shall justify the coverage of these tests.

2.5.3.3.7 Data structures and declared constant values shall be verified for correctness.

2.5.3.3.8 Operations on – and access to – all data items shall be exercised, and the coverage
of these tests shall be justified.

2.5.3.3.9 All time critical sections of code shall be tested under realistic conditions, and the
coverage of these tests shall be justified.

2.5.3.3.10 The result of calculations performed by software shall be verified against pre-
calculated values.

2.5.3.3.11 The adequacy of commentaries and code documentation shall be verified.

2.5.3.3.12 Compliance with the appropriate project design and coding directives and
standards shall be verified.

2.5.3.4 Traceability and Documentation

2.5.3.4.1 Test plans, procedures and results shall be documented. The expected test results
shall also be documented, together with the method for their derivation. This documentation
should be accessible prior to the execution of the tests.

2.5.3.4.2 Test results shall clearly indicate which tests met expectations and which did not.

 132

2.5.3.4.3 All anomalies revealed by the verifications shall be recorded and investigated.
The results and follow-up of these investigations shall be reported and made accessible to the
regulator. If software changes are necessary, change requests shall be issued and processed
according to the procedures of chapter 2.7.

2.5.3.4.4 Using the documentation, it shall be possible to trace each verification result back
to the associated functional and non-functional requirement(s). For this purpose appropriate
comments shall be contained in the source code documentation.

2.5.3.5 Independent Verification

2.5.3.5.1 For safety system software, the planned verification shall be designed and
performed by personnel that are independent from the team that designs and produces the
software. This requirement, however, does not apply to the verification of the hardware-
software integration phase.

2.5.3.5.2 All communications and interactions between the verification team and the design
team, which may have a significant bearing on the verification results, shall be recorded in
writing.

2.5.3.5.3 All verification activities shall be comprehensively documented to enable auditing.

2.5.3.5.4 Personnel conducting the tests shall have received proper training in the use of the
applicable test tools and methods.

2.5.4 Recommended Practices

2.5.4.1 In order to limit the high effort and costs of verification that may be involved, an
optimised ratio between static analysis techniques and testing should be found.

2.5.4.2 By using development tools, some of the neighbouring development steps of the
classical software life-cycle model can be combined – for instance the steps from design
specification to software implementation. In such cases, a special verification effort should be
dedicated to the qualification of the applied tools (see chapter 1.4) and of the target object
code.

2.5.4.3 In addition to the requirements of IEC 60880, the application of verification
concepts based on formal methods – e.g. symbolic code execution and formal code
verification – and automated transformation tools are recommended.

 133

 134

2.5.4.4 As a precaution against the introduction of erroneous or unwanted code –
introduced for example by translation tools – the machine code should be translated into a
form suitable for comparison with the specifications (reverse engineering). This process can
be carried out either manually or using software aids.

2.5.4.5 Anomalies only should be indicated and reported by the verification team; they
should not recommend design changes.

 * * *

2.6 Validation and Commissioning

2.6.1 Rationale

Validation and commissioning are processes that demonstrate through testing that the system
will perform its intended functions. These processes of the safety demonstration are regarded
as essential since the current analysis techniques do not enable the correctness of a system to
be fully demonstrated.

More precisely, validation in this consensus document is regarded as the test and the
evaluation of the integrated computer based system hardware and software to demonstrate
compliance with its functional and non-functional requirements specifications. Validation is
usually performed off-site.

Commissioning is regarded as the onsite process during which plant components and systems,
having been constructed, are made operational and confirmed to be in accordance with the
design assumptions and to have met the safety requirements and the performance criteria. For
the purposes of this Consensus Document it will be assumed that commissioning follows the
principal stages given in the IAEA Safety Guide No 50-SG-D4 [7], “Commissioning
Procedures for Nuclear Plants”, namely: pre-operational testing; cold performance testing; hot
performance testing; loading of fuel and sub-critical testing; start-up to initial criticality
phase; low power tests.

2.6.2 Issues Involved

2.6.2.1 The digital nature of a computer based system precludes the use of extrapolation
and interpolation in the determination of the type and number of tests needed to demonstrate
compliance with the requirements. This limitation obliges the validater to carefully justify the
amount of testing performed in relation to the required system reliability. As for verification
tests, use may have to be made of equivalence partitioning and boundary conditions. There is
also the problem of demonstrating that inaccessible features (those not readily testable at the
validation stage) have been tested satisfactorily at the commissioning stage. Finally, the level
of input simulation for an acceptable demonstration has to be shown to be adequate.

 135

2.6.2.2 As already stated in chapter 2.2, executable software components can be of
different software types. These components do not contribute in the same way to the
dependability of the whole system. Specific evidence and methods of validation and
verification are necessary to show that these components comply with the dependability
requirements of the system.

2.6.2.3 During the production of the software, there are occasions when the designer
recognises the need for an “added feature”. It is important that these added features are
reflected in the appropriate requirement specifications and that they are included in the
validation tests.

2.6.2.4 Since it is neither safe nor reasonably practicable to test the behaviour of a safety
system using real accident scenarios on the plant, this aspect of the system has to be tested
using simulated scenarios which represent the dynamic behaviour of the plant. The derivation
of representative scenarios can be problematical.

2.6.2.5 There is a possibility that the assumptions made about the behaviour of a device
connected to the system may be incorrect – and, therefore, that the simulation model might be
inadequate. This possibility leads to the need for a justification of the correctness of the
simulation of all devices – in terms of input and output – during validation and
commissioning.

2.6.2.6 It is important that the design team does not influence the validation activity since
this could be a source of common cause failure due to inappropriate test specifications or
incorrect interpretation of results. Therefore, there should be some agreed level of
independence between these two teams. This independence, however, should not deprive the
validation team from acquiring sufficient knowledge of – and familiarity with – the system.

2.6.2.7 There is also the problem of determining the degree of test coverage required and
the adequate level of simulation at each of the commissioning phases mentioned in the
rationale section 2.6.1.

2.6.3 Common Position

2.6.3.1 Validation

2.6.3.1.1 The computer system validation shall be conducted in accordance with a formal
validation plan. The plan shall identify acceptance criteria, techniques, tools, test cases and
expected results.

2.6.3.1.2 Validation tests shall be performed on target hardware and under representative
environmental conditions.

 136

2.6.3.1.3 The test programme shall encompass all modes of operation (covering particularly
maximum loadings) and ranges of variables under conditions which are as representative of
the operating environment as possible, including relevant normal operations, anticipated
operational occurrences and accident conditions.

2.6.3.1.4 Testing shall be conducted in a disciplined and orderly manner and in accordance
with IEC 60880 [12]. During every test, the status of all outputs shall be monitored to ensure
that unintentional changes do not occur. The proposed tests shall exercise the software across
the full range of the requirement specifications paying particular attention to boundary
conditions and making justified use of equivalence partitioning.

2.6.3.1.5 Timing conflicts and bus contention problems are of importance for validation
because they cannot be tested comprehensively in earlier phases. These aspects shall be
thoroughly tested. Adequacy of spare CPU time, scan times and data transfer rates shall be
demonstrated.

2.6.3.1.6 It shall be ensured that the requirements specifying the fault, exception and failure
mitigating mechanisms (see common positions 2.2.3.5 and 2.2.3.6), and the requirements
which specify the system behaviour in the presence of abnormal inputs and conditions (see
common position 2.1.3.2.3), are correctly implemented.

2.6.3.1.7 The system shall also be subjected to appropriate validation tests to check that the
set of system requirements is complete, consistent and correct.

2.6.3.1.8 All time critical sections of code shall be tested under realistic conditions, and the
coverage shall be justified. Where calculations are performed in the software their result shall
be checked against pre-calculated values.

2.6.3.1.9 Appropriate tests shall be done to verify the fault tolerance of the system. These
shall include a series of tests that demonstrate that the system is tolerant of input sets that are
outside its operational input space. The chosen set of tests shall be justified in terms of its
appropriateness to the operational profile.

2.6.3.1.10 All tests shall be fully documented and analysed, and each test shall be traced to
the associated system requirement specification. This documented analysis shall be used to
demonstrate the test coverage achieved.

2.6.3.1.11 The expected outputs shall be stated in the test procedures before the tests are
undertaken. In each test, all outputs shall be monitored, and any anomaly investigated and its
resolution fully documented.

2.6.3.1.12 All changes to either software or test specifications shall be subjected to change
control procedures that comply with the recommendations of chapter 2.7.

 137

2.6.3.1.13 Features added during the design process shall be fully tested. These shall be
traced to the changes in the system or design requirement specifications to demonstrate the
consistency, completeness and correctness.

2.6.3.1.14 The validity of simulated inputs shall be justified and tests shall demonstrate the
correct operation of simulated items.

2.6.3.1.15 The system shall be tested using a simulation of the accident scenarios. These
tests shall be based on an analysis of the plant transients induced by postulated initiating
events. The number of tests executed shall be sufficient to provide confidence in the system
dependability.

2.6.3.1.16 The validaters shall be independent from the team producing the requirement
specifications and the software. All communications and interactions with significance to
validation results shall be recorded in writing. The validation team shall review the
specifications for correctness and completeness, and shall devise and implement the test
strategy that demonstrates that the system meets its requirements.

2.6.3.1.17 All validation activities shall be comprehensively documented to enable auditing.
The validation team shall indicate anomalies only; they shall not recommend design changes.

2.6.3.1.18 The system operation and maintenance manuals shall be validated, as far as
possible, during the validation phase.

2.6.3.2 Commissioning

2.6.3.2.1 Commissioning tests shall ensure that both the system and the plant safety
requirements are complete and correct.

2.6.3.2.2 The number and type of commissioning tests shall be justified. The omission of
any validation test from the commissioning tests shall be justified.

2.6.3.2.3 The validation of the system operational and maintenance manuals shall, if
necessary, be completed during the commissioning phase.

2.6.3.2.4 On-site testing of the full system (software and hardware) over an extended period
(the duration will depend on system complexity) shall take place. During this period the
system shall be subjected to routine test and maintenance activities. A log shall be kept of
any revealed faults, and appropriate actions shall be taken in agreement with chapter 2.7.

 138

 139

2.6.4 Recommended Practices

2.6.4.1 For safety systems, the system reliability should be estimated using statistical
testing. The applied tests should be randomly selected from the operational input space and
their number should be based upon the safety system required reliability and confidence level.

2.6.4.2 The validation plan shall be defined as soon as possible during the project.

2.6.4.3 The traceability of the tests to the requirement specifications should be based on a
requirement matrix, that contains for every software requirement a reference to the tests
which cover this requirement, and to the lifecycle phase (verification step, validation,
commissioning) where they have been performed.

 * * *

2.7 Change Control and Configuration Management

2.7.1 Rationale

2.7.1.1 Changes to the software of safety systems in a nuclear plant have the potential to
affect significantly the safety of that plant if incorrectly conceived or implemented. Any
alteration to the software of these systems at any phase in the system lifecycle, whether due to
an enhancement or a need to adapt to a changing environment (resulting in a modification to
the system requirements) or to correct an error must be conceived and implemented at least to
the same standards as the original implementation. This point is particularly important in the
case of changes made after delivery. Furthermore, there should be procedures in place to
ensure that the effects of such changes, on all parts of the system, are assessed to reduce to
acceptable levels the potential for faults to be introduced.

2.7.1.2 A software-based safety system is formed from many different items of software
and hardware and includes many documents that describe these items. Hence it is important
that there is a full index of the items involved in the construction of a system, and that the
status of each item (including changes made) is established and tracked so that faults are not
introduced due to the incorrect versions of these items being used. A well ordered
configuration management system provides the means to ensure this, as well as playing a
significant role in a properly managed change control process.

2.7.2 Issues Involved

2.7.2.1 Software changes, as with any other changes, can occur either during the
development of a system up to and including the end of commissioning (usually classed as
“software modifications”), or in operation following the completion of commissioning at site
(usually classed as “software maintenance”).

2.7.2.2 The international standards IEC 60880 [12] and IEC 61513 [15] contain the
necessary elements for an acceptable software change process. However, for regulatory
purposes and for safety systems there is a need to add an additional dimension to the change
process. This additional dimension results from the need for: (i) an analysis of the effect of
the change on safety; (ii) the provision of documentary evidence that the change has been
conceived and implemented correctly; and (iii) a process of independent review and approval
of the change. The reviewing process described in common position 2.7.3 is a clarification
for licensing purposes of the requirements of the standard.

 141

2.7.2.3 The need for a software change has to be carefully evaluated because the
consequences of a change are not always easily anticipated. For example, other errors may be
introduced.

2.7.2.4 Consideration should be given during the design phase to software maintainability
since this attribute will reduce the number of errors introduced by any software change
process.

2.7.2.5 If the configuration management is inadequate then earlier versions of software and
documentation may be inadvertently incorporated into the current version of the system or
documentation. These earlier version items may include faults or properties that are unsafe
when used in the current version.

2.7.2.6 For changes enacted post delivery to site (particularly during commissioning and
operation), there is a need to ensure continuity of a rigorous regime of software change
control.

2.7.3 Common Position

2.7.3.1 General

2.7.3.1.1 The software change procedure and documentary process shall apply to all
elements of the software system including its documentation. This procedure shall apply
equally to system functionality enhancements, environmental adaptations (resulting in a
modification to the system requirements) and corrections of implementation errors.

2.7.3.1.2 An appropriate software architecture (see chapter 2.3 for guidance on software
design features which aid maintainability) and a suitable software configuration management
system (see section 2.7.3.4) shall be used during the lifecycle process in order to maintain
safety. For safety systems, no distinction shall be drawn between major and minor software
changes since a wrongly implemented minor change could challenge safety.

2.7.3.1.3 Once a software or documentation item has been approved, i.e. has been placed
under configuration control (usually following its initial verification and placing in the
software/documentation library for release), any changes to this item shall be controlled by a
procedure containing the elements given in the following paragraphs 2.7.3.1.4, 2.7.3.1.5 and
2.7.3.1.6.

2.7.3.1.4 The software change procedure and the configuration management system shall
include an adequate problem reporting and tracking system.

 142

2.7.3.1.5 The software change procedure shall contain the following basic elements:

– the identification and documentation of the need for the change;

– the analysis and evaluation of the change request, including: a description of the design
solution and its technical feasibility; and its effect on the safety of the plant and on the
software itself ;

– the impact analysis of each software change: for each software change, the implementers
of the change shall produce a software impact analysis containing a short description of
the change plus a list of software parts affected by the change plus the effect on non-
functional system properties as, e.g. dependability, response time, system accuracy,
hardware performance. Objective evidence that the full impact of each software change
has been considered by the implementer for each software part affected shall be provided.
As a minimum this shall consist of a summary description of the change to be
implemented, plus documentary evidence of the effect of the change on other software
parts. The software impact analysis shall also list data items (with their locations – scope
of the data item) that are affected by the change plus any new items introduced.

– the implementation (consistent with the standards employed in the original production
process), verification, validation (as appropriate) and release of the changed software or
document item. The V&V phases may make use of the software impact analysis to
perform regression testing.

– The requirements of IEC 60880 [11] sections 9.1, 9.2 and 9.3 shall apply.

2.7.3.1.6 Faults shall be analysed for cause and lack of earlier detection. Any generic
concern shall be rectified and a report produced.

2.7.3.2 Software Modification

2.7.3.2.1 A correction to a wrongly implemented software change, if found at the stage of
site testing (i.e. following installation of the software on the plant), shall be processed as
though it were a new software change proposal.

2.7.3.2.2 The commissioning team shall use the software impact analysis and the factory
V&V report to develop their own series of tests in the form of a site commissioning test
schedule.

 143

2.7.3.3 Software Maintenance

2.7.3.3.1 All software changes in operation following the completion of commissioning at
site (called software maintenance in this document), shall be controlled by procedures which
meet the requirements of this section 2.7.3.3.

2.7.3.3.2 For safety systems, program and fixed data (including operational data) shall be
held in read only memory (ROM) so that they cannot be changed on-line either intentionally
or due to a software error.

2.7.3.3.3 For safety systems, software maintenance changes shall be tested on the computer
system installed at site. Any divergence from this shall be justified in the test documentation.

2.7.3.3.4 Software maintenance changes shall be reviewed, from a safety perspective, by
suitably qualified and experienced staffs – e.g. manufacturers (suppliers), system designers,
safety analysts, plant and operational staff – that are independent from those persons
proposing, designing and implementing the change. The above review shall consider
manufacturers (suppliers) V&V and independent assessment reports, as well as test
specifications and test reports, or other such documentation as appropriate to the change being
proposed. The results of the review shall be documented and shall include a recommendation
for approval, or rejection of the change from the safety perspective.

2.7.3.3.5 Only software approved for release shall be installed at site.

2.7.3.3.6 Before the start of site testing of any changes to the software of a safety system,
the test specification shall be reviewed by independent reviewers.

2.7.3.3.7 Before permitting the operational use of software following a change, an updated
and checked version of the system and safety demonstration documentation (including any
routine test schedules) shall be available, fully reflecting the changes that have been made.
This shall be confirmed by independent review.

2.7.3.3.8 The independent reviews shall be documented.

2.7.3.4 Configuration Management

2.7.3.4.1 All the items of software including documents, data (and its structures) and
support software shall be covered by a suitable, readily understood and fully documented
configuration management system (CMS) throughout the lifecycle. An item of software or
documentation shall not be accessible (to persons other than those responsible for its design
and verification) until it is approved and under configuration control.

 144

 145

2.7.3.4.2 A formal procedure shall be set up for version control and the issuing of correct
versions. Provision shall be made for informing all relevant personnel of pending changes
and approved modifications.

2.7.3.4.3 All software copies, including any pre-existing software that is being used, shall be
clearly and uniquely labelled with at least title, version number and creation or acquisition
date. Provision should be made for the inclusion in the source code listing of information on
changes made, approval status, and authors, reviewers and approvers names. The
identification and version number shall be included in the code so that this can be checked by
other software items.

2.7.3.4.4 After delivery of the software and its documentation, the same level of
configuration management shall be maintained at the site where the delivered software is
stored.

2.7.3.4.5 A configuration audit shall be performed on the safety system software prior to
loading to establish that the correct items and versions have been included in the system.
Following system loading, the loaded version shall be verified as being uncorrupted.

2.7.4 Recommended Practices

2.7.4.1 Any software item intended to be used as part of a safety system and that has not
been subjected to the above software change process should be assessed on the basis of
chapter 1.4.

2.7.4.2 Where a pre-existing software item (qualified to chapter 1.3) is introduced into a
safety system as part of the change process, its impact on the system should be evaluated as
appropriate to the same level as described by common position 2.7.3.

2.7.4.3 It is always good practice to make only one software change at a time within the
same system unless changes are shown to be independent. Exceptions to this practice are
permissible but once significant quantities of nuclear material have been introduced into a
plant (e.g. fuel loaded into a nuclear reactor) then there should be no more than one software
change being implemented on a safety system at any one time.

2.7.4.4 To aid backward traceability, the configuration management system should
maintain lists of items, and their changes, that were included in previous baselines. These
lists should include names of individuals and organisations to whom configuration items have
been distributed.

 * * *

2.8 Operational Requirements

2.8.1 Rationale

If the processes that support and maintain the safety systems of nuclear installations during
their operational use are not of a sufficiently high integrity then they may jeopardise the safety
system's fitness for purpose. For example, the accuracy of calibration data, or the process of
loading data that are required for core limits' calculation, or the conversion of electrical
signals into engineering units can have a significant effect on the behaviour of the safety
system; and could, in fact, lead to a failure to trip. Also, the incorrect operation of automatic
test equipment could result in a fault remaining un-revealed in the tested system with the
potential for spreading out, even over redundant trains during later operation.

Proper operators’ training, as well as the development of a periodic test plan, is necessary in
order to ensure correct and safe plant operation.

2.8.2 Issues Involved

2.8.2.1 Periodic Testing

As a part of a safety system, the computer based system needs to undergo periodic testing in
order to verify maintenance of its basic functional capabilities.

2.8.2.2 Generation of Calibration Data

A computer-based safety system on a nuclear installation is dependent for its correct operation
on a large amount of calibration data that varies during the operational life of the installation
due to fuel burn-up, equipment failure and planned outages. These data are derived from a
variety of sources often involving both manual and automatic activities. As mentioned above,
errors in these data could adversely affect the integrity of the safety system. For instance, an
error in the core flux mapping readings (either in terms of instrument readings or positional
measurements) could prevent the reactor's core limits calculator from tripping the reactor on a
reactivity event. Also, wrong calibration data could mean that an instrument is generating an
improper reading resulting again in a failure to actuate safety equipment.

 147

2.8.2.3 Loading of Calibration Data

Even when the data is correctly generated there is the potential for errors to be introduced into
the safety system due to incorrect entry of that data. Data entry may be either manual or
electronic (either via a data link or from magnetic media). Manual data entry has all the usual
problems of human error (transposition errors, misreading and incorrect addressing). Equally,
when data is entered electronically, there is the possibility of data corruption e.g. due to
programming errors or electronic noise.

2.8.2.4 Self-Supervision Functions and Automatic Test Equipment

Digital computer technology has the capability to perform extensive self supervision functions
as well as routine testing of safety systems by means of test equipment. When all trains are
subjected to identical supervision or tests via identical software, there is the potential for
common cause failure of the safety system due to a design error in the supervision functions
or the tester.

2.8.2.5 Plant Component Test and Corrective Maintenance Equipment

Certain activities of maintenance on redundant items of equipment are allowed whilst the
reactor is at power. This may involve the replacement of an output card of a guardline, the
renewal of cabling between the guard-line and the plant item or the repair of devices
controlled by the computer.

2.8.3 Common Position

2.8.3.1 Periodic Testing

2.8.3.1.1 A program for safety systems periodic tests, that includes applicable functional
tests, instruments checks, verification of proper calibration and response time tests, shall be
defined. The tests shall verify periodically the basic functional capabilities of the system,
including basic safety and safety related functions, major functions not important to safety,
and special testing used to detect failures unable to be revealed by self-supervision or by
alarm or anomaly indications. Periodic testing shall not adversely affect the intended system
functions.

2.8.3.1.2 It shall be demonstrated and documented that the combination of the provisions of
automatic self-supervision and periodic testing during operations (cf. common positions
2.2.3.6 and 2.2.3.9) cover all postulated faults.

 148

2.8.3.1.3 The operator interface shall include the means to allow the operator to easily
obtain confirmation that the computer system is alive and that the information produced on
displays and screens is properly refreshed and updated (cf. also common position 2.1.3.3).

2.8.3.2 Generation of Calibration Data

The calibration data shall be generated according to the safety and reliability requirements of
the I&C function they are assigned to. An appropriated procedure of quality assurance shall
be established.

2.8.3.3 Loading of Calibration Data

2.8.3.3.1 Where data is loaded manually there shall be a read-back facility that requires the
operator to confirm the data entered before he/she is allowed to proceed to the next item.

2.8.3.3.2 On completion of the data entry there shall be a printout of all data entered.
Procedures shall be in place to require that printout to be checked by an independent party
before the guardline is put back into service.

2.8.3.3.3 Where the data is entered electronically, that set of data shall be covered by a
checksum which will enable the data to be verified. In addition, the data shall be read back
and verified automatically against the original. Printouts of the data entered and that held in
the guardline shall be provided and retained for auditing purposes.

2.8.3.3.4 The software for loading the calibration data and monitoring data values shall be
of the same integrity as the safety system. If this is not the case then it shall be demonstrated
by means of a software hazard analysis that the safety system software and data cannot be
corrupted by the loading/display software.

2.8.3.3.5 A full test of the guardline shall be performed following a data change so as to
demonstrate its correct operation.

2.8.3.4 Equipment for Periodic Testing

2.8.3.4.1 The test equipment software shall be qualified to a level in accordance with its
intended use.

2.8.3.4.2 So as to avoid common mode failures, constant and fixed parameter values to be
used by the testing equipment shall not be obtained from the computer of the safety system,
but e.g. from the system or the computer design requirement specifications.

 149

2.8.3.4.3 On termination of the testing operations, the test equipment shall restore the safety
system to its original status.

2.8.3.4.4 The test equipment shall be subjected to periodic calibration checks.

2.8.3.5 Equipment for Plant Component Testing and Corrective Maintenance

2.8.3.5.1 The means of testing plant items shall be engineered as part of the safety system.
Such engineered test systems and their user interfaces shall be designed to standards
commensurate with their duty. They shall provide a read-back facility, with confirmation by
the operator, of the plant item selected before it is activated for test. Such test equipment shall
restrict the activation to one plant item at a time. A plant item shall be returned to its original
entry status before another item is selected.

2.8.3.5.2 It shall not be possible to connect this type of test equipment to more than one
guardline at any one time.

2.8.3.5.3 Bypass of actuation signals for maintenance of output devices and components
shall be indicated by alarm and be recorded as unavailable.

2.8.3.6 Operator Training

2.8.3.6.1 Instrumentation and control specialists shall follow a training program that
addresses safety system performances, operation and maintenance during normal and
abnormal reactor operation.

2.8.3.6.2 Operator training shall be conducted on a training system which is equivalent to
the actual hardware/software system. Training facilities for each operator interface device
shall be provided by the training system. A computer simulator may be used for this purpose.

2.8.3.7 Operational Experience

Operational experience shall be recorded and cover all operating situations. The records shall
be appropriately structured and analysed so as to allow data on the system functional and non
functional behaviour to be derived over given periods of time. The records shall be made
accessible to the regulator. The documentation of the operating experience shall comply with
the requirements of common positions 1.14.3.1 and 1.14.3.2. It shall be assured that the
safety demonstration remains valid in the light of the operating experience. The common
positions of sections 2.7.3.1, 2.7.3.2, 2.7.3.3 are applicable.

 150

 151

2.8.4 Recommended Practices

2.8.4.1 Periodic Testing

The quality of the computer equipment and software used for periodic testing functions
should comply with the recommendations for tools mentioned in Chapter 1.5 (see in particular
common position 1.5.3.1)

2.8.4.2 Generation of Calibration Data

2.8.4.2.1 Unless the calibration data is generated totally automatically via a system that has
been developed to the same standards as the safety systems then there should be a diverse
means for the production of the data or an independent verification of the data. This diverse
means of verification may be either manual or automatic but it should be demonstrated that
the combination of the principal and the diverse means of verification forms a sufficiently
high integrity process so as not to degrade the safety system. All calculations should be
documented and retained for future audit.

2.8.4.2.2 The principal means for the generation of the data should be computer assisted so
as to reduce the potential for the introduction of human error. The software should be
produced to high quality industrial standards. Verification check points should be introduced
at convenient points.

2.8.4.3 Loading of Calibration Data

The process of loading and changing the calibration data (e.g. in the case of changing the
operational mode) should be computer assisted using pre-calculated and fixed stored
calibration data sets. The software for loading calibration data should be to the same
standards as the safety system software.

 * * *

References

1 ANSI/IEEE-ANS-7-4.3.2, 2003 revision: “IEEE criteria for Digital Computers in Safety
Systems of Nuclear power generating Stations” as endorsed by revision 1 (draft regulatory
guide DG-1130, December 2004) of proposed revision 2 of US NRC Regulatory Guide
1.152: “Criteria for programmable digital computer system software in safety related
systems of NPPs”

2 Courtois, P.J. 2008. Justifying the dependability of computer-based system. With
applications in nuclear engineering. Springer series in reliability engineering. 323pp.

3 Ehrenberger, W.D. Probabilistic Techniques for Software Verification. Paper for IAEA
Technical Committee meeting on Safety Implications of Computerised Process Control in
Nuclear Power Plants, Vienna, Austria, November 1989

4 EUR18158. 1998. European nuclear regulators’ current requirements and practices for the
licensing of safety critical software for nuclear reactors. European Commission, DG
Environment, Nuclear safety and Civil Protection, Report EUR18158 (revision 8), 1998.

5 EUR 19265 EN. 2000. Common position of European nuclear regulators for the licensing
of safety critical software for nuclear reactors. Nuclear safety, regulation and radioactive
waste management unit of the European Directorate General for the Environment. May
2000.

6 HSE 1997. Four Party Regulatory Consensus Report on The Safety case for Computer-
based Systems in Nuclear Power Plants. November 1997.

7 IAEA Safety Guide, Commissioning for Nuclear Plants, Safety Standards Series N° NS-
G-2.9, 2003.

8 IAEA Safety Guide, Software for Computer Based Systems Important to Safety in
Nuclear Power Plants, Safety Standards Series N° NS-G-1.1, 2000.

9 IAEA, Technical Reports Series. Verification and Validation of Software Related to
Nuclear Power Plant Instrumentation and Control, TRS N°384, 1999.

10 IAEA Technical Reports Series. Software Important to Safety in Nuclear Power Plants,
TRS N°367, 1994.

11 IEC 60880. 1986. Software for computers in the safety systems of nuclear power stations.

 153

 154

12 IEC 60880. 2nd edition, 2006. Nuclear power plants. Instrumentation and control systems
important to safety. Software aspects for computer-based systems performing category A
functions.

13 IEC 61226. Second edition. 2005. Nuclear power plants – Instrumentation and control
systems important to safety – Classification of instrumentation and control functions.

14 IEC 61508. 1998. Functional safety of electrical/electronic/programmable electronic
safety-related systems – Part 1: General Requirements, Part 3: Software Requirements.

15 IEC 61513. 2001. Nuclear power plants. Instrumentation and control for systems
important to safety. General Requirements for systems.

16 Knight and Leveson 1986 – An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming, IEEE transactions on Software
Engineering, SE-12 (1), pp.96-109, 1986.

17 Littlewood B., Popov P., and Strigini L., “Assessment of the Reliability of Fault-Tolerant
Software: a Bayesian Approach”, in 19th International Conference on Computer Safety,
Reliability and Security (SAFECOMP 2000).

18 Littlewood, B., Strigini, L. Validation of Ultra-High Dependability for Software-based
Systems, City University. In Communications of the ACM, November 1993, pp. 69-80.

19 Miller W.K., et al. Estimating the Probability of Failure When Testing Reveals no
Failures. IEEE Transactions on Software Engineering, Vol. 18 No.1, pp.33-43, January
1992.

20 Parnas, D.L., Asmis, G.J.K., Madey, J. 1991 Assessment of safety critical software in
nuclear power plants. Nuclear Safety, Vol. 32 No. 2.

21 Rushby, J. 1993. Formal Methods and the Certification of Critical Systems, Technical
Report CSL-93-7, SRI International.

22 Voges, U. “Software diversity”, Proceedings 9th Annual Conference on Software Safety,
Luxembourg, 7-10 April 1992. Ed. by the Centre for Software Reliability, City Univ.,
London.

 * * *

Bibliography

Basic safety Rule II.4.1.a. “Software for Safety Systems”. France.

CEMSIS. Cost Effective Modernisation of Systems Important to Safety project. Pavey D., R.
Bloomfield, P.-J. Courtois et al. Pre-proceedings of FISA-2003. EU Research in Reactor
Safety. Luxemburg, 10-13 November 2003. EUR 20281, pp.301-305.

DeVa. Design for Validation. European Esprit Long Term Research Project 20072. Third
Year Report. Deliverables, Parts 1 and 2. December 1998. Published by LAAS-CNRS,
Toulouse, France.

Dobbing, A., et al. Reliability of SMART Instrumentation. National Physical Laboratory and
Druck Ltd, 1998.

EUR 17311 EN. 1997. Dependability of Extensively Deployed Products with Embedded IT.
Brussels Workshop, November 1996 Main Report. M. Masera, M. Wilikens, P. Morris, Ispra,
Italy.

HSE 1998. The Use of Computers in Safety Critical Applications. Final Report of the study
group on the safety of operational computer systems. 1998. HSE books, PO Box, UK.

IAEA Safety Guide, Instrumentation and Control Systems Important to Safety in Nuclear
Power Plants. Safety Standards Series N° NS-G-1.3, 2002.

IEC 60231. 1967. General principles of nuclear reactor instrumentation.

IEC 60231 A. 1969. General principles of nuclear reactor instrumentation. First supplement.

IEC 60639 1998. Nuclear power plants – Electrical equipment of the safety system –
Qualification.

IEC 60709 Ed. 2. 2004. Nuclear power plants – Instrumentation and control systems
important to safety – Separation.

IEC 60987. 1989. Programmed digital computers important to safety for nuclear power
stations.

IEC 60987 Ed. 2. 2007. Nuclear power plants – Instrumentation and control important to
safety – Hardware design requirements for computer-based systems.

 155

 156

IEC 62138. 2004. Nuclear power plants – Instrumentation and control important for safety –
Software aspects for computer-based systems performing category B or C functions.

IEEE Std 7-4.3.2-1993. IEEE Standard Criteria for Digital Computers in Safety Systems of
Nuclear Power Generating Stations.

IEEE Std 730.1-2002. IEEE Standard for Software Quality Assurance Plans.

N290.14-07. Qualification of pre-developed software for use in safety-related instrumentation
and control applications in nuclear power plants. CSA Standards Update service. July 2007.

Perry, W. 1995. Effective methods for Software Testing. John Wiley.

Randell, B., et al (eds). 1995. Predictably dependable computing systems. EUR 16256EN,
Springer-Verlag.

Saglietti, F. 2004. Licensing reliable embedded software for safety-critical applications. Real-
Time Systems, 28, 217-236.

Sommerville, I. 1985 Software Engineering, Ed. 2 Addison-Wesley International Computer
Science Series. Boston.

Stankovic J.A. Wireless Sensor Networks. IEEE Computer October 2008.

Tanenbaum, A.S. 1992. Modern Operating Systems. Prentice Hall.

Tanenbaum, A.S. 1995. Distributed Operating Systems. Prentice Hall.

 * * *

Vous dépendez, dans une affaire qui est juste et importante,

du consentement de deux personnes. L’un vous dit:”J’y donne les mains pourvu qu’un tel
condescende”; et ce tel condescend

et ne désire plus que d’être assuré des intentions de l’autre.
Cependant rien n’avance; les mois, les années s’écoulent inutilement:

”Je m’y perds, dites-vous, et je n’y comprends rien;
il ne s’agit que de faire qu’ils s’abouchent et qu’ils se parlent.”

Je vous dis moi, que j’y vois clair, et que j’y comprends tout:
ils se sont parlé.

La Bruyère, Les caractères de la cour, (1688, 1st version – 1694, 8th and last version)

 157

Strålsäkerhetsmyndigheten
Swedish Radiation Safety Authority

SE-171 16 Stockholm Tel: +46 8 799 40 00 E-mail: registrator@ssm.se
Solna strandväg 96 Fax: +46 8 799 40 10 Web: stralsakerhetsmyndigheten.se

	Licensing of safety critical softwarefor nuclear reactors
	SSM Report number: 2010:01
	Background
	Effect on SSM supervisory and regulatory task
	For further information contact

	Disclaimer
	Executive Summary
	Objectives

	Document Structure
	Background (history)
	I INTRODUCTION
	Objectives
	Scope
	Safety Plan
	Licensing Issues: Generic and Life Cycle Specific
	Definition of Common Positions and Recommended Practices
	Historical Background

	II GLOSSARY
	PART 1: GENERIC LICENSING ISSUES
	1.1 Safety Demonstration
	1.1.1 Rationale
	1.1.2 Issues Involved
	1.1.3 Common Positions
	1.1.4 Recommended Practices

	1.2 System Classes, Function Categories and Graded Requirements for Software
	1.2.1 Rationale
	1.2.2 Issues Involved
	1.2.3 Common Position
	1.2.4 Recommended Practices

	1.3 Reference Standards
	1.3.1 Reference standards for the software of safety systems in Belgium,Finland, Germany, Spain, Sweden and UK
	1.3.2 Additional reference standards and guidelines for safety systems inthe member states represented in the task force
	1.3.3 Related Standards, Guidelines and Technical Documents

	1.4 Uses and Validation of Pre-existing Software (PSW)
	1.4.1 Rationale
	1.4.2 Issues involved
	1.4.3 Common Position
	1.4.4 Recommended Practices

	1.5 Tools
	1.5.1 Rationale
	1.5.2 Issues Involved
	1.5.3 Common Position
	1.5.4 Recommended Practices

	1.6 Organisational Requirements
	1.6.1 Rationale
	1.6.2 Issues involved
	1.6.3 Common Position
	1.6.4 Recommended Practices

	1.7 Software Quality Assurance Programme and Plan
	1.7.1 Rationale
	1.7.2 Issues Involved
	1.7.3 Common Position
	1.7.4 Recommended Practices

	1.8 Security
	1.8.1 Rationale
	1.8.2 Issues Involved
	1.8.3 Common Position
	1.8.4 Recommended Practices

	1.9 Formal Methods
	1.9.1 Rationale
	1.9.2 Issues Involved
	1.9.3 Common Position
	1.9.4 Recommended Practices

	1.10 Independent Assessment
	1.10.1 Rationale
	1.10.2 Issues Involved
	1.10.3 Common Position

	1.11 Graded Requirements for Safety Related Systems (New and Pre-existing Software)
	1.11.1 Rationale
	1.11.2 Issues Involved
	1.11.3 Common Position
	1.11.4 Recommended Practices

	1.12 Software Design Diversity
	1.12.1 Rationale
	1.12.2 Issues Involved
	1.12.3 Common Positions
	1.12.4 Recommended Practices

	1.13 Software Reliability
	1.13.1 Rationale
	1.13.2 Issues Involved
	1.13.3 Common Positions – Applicable when reliability targets are used
	1.13.4 Recommended Practices

	1.14 Use of Operating Experience
	1.14.1 Rationale
	1.14.2 Issues Involved
	1.14.3 Common Position
	1.14.4 Recommended practices

	1.15 Smart Sensors and Actuators
	1.15.1 Rationale
	1.15.2 Issues Involved
	1.15.3 Common Position
	1.15.4 Recommended Practices

	PART 2: LIFE CYCLE PHASE LICENSING ISSUES
	2.1 Computer Based System Requirements
	2.1.1 Rationale
	2.1.2 Issues Involved
	2.1.3 Common Position
	2.1.4 Recommended Practices

	2.2 Computer System Design
	2.2.1 Rationale
	2.2.2 Issues Involved
	2.2.3 Common Position
	2.2.4 Recommended Practices

	2.3 Software Design and Structure
	2.3.1 Rationale
	2.3.2 Issues Involved
	2.3.3 Common Position
	2.3.4 Recommended Practices

	2.4 Coding and Programming Directives
	2.4.1 Rationale
	2.4.2 Issues Involved
	2.4.3 Common Position
	2.4.4 Recommended Practices

	2.5 Verification
	2.5.1 Rationale
	2.5.2 Issues Involved
	2.5.3 Common Position
	2.5.4 Recommended Practices

	2.6 Validation and Commissioning
	2.6.1 Rationale
	2.6.2 Issues Involved
	2.6.3 Common Position
	2.6.4 Recommended Practices

	2.7 Change Control and Configuration Management
	2.7.1 Rationale
	2.7.2 Issues Involved
	2.7.3 Common Position
	2.7.4 Recommended Practices

	2.8 Operational Requirements
	2.8.1 Rationale
	2.8.2 Issues Involved
	2.8.3 Common Position
	2.8.4 Recommended Practices

	References
	Bibliography

